Photonics on a Budget: Low-Cost Polymer Sensors for a Smarter World
Abstract
1. Introduction
2. Polymer Materials for Large-Area Photonic Sensors
Polymer Material | Typical Refractive Index (at 633–1550 nm) | Transparency Range | Key Features | Role in Photonic Sensors |
---|---|---|---|---|
PMMA (Polymethyl methacrylate) [42,66,67] | 1.48–1.50 | Visible to NIR | Low cost, good optical clarity, easy patterning (e.g., nanoimprint) | Cladding layers, waveguides, and disposable sensor substrates |
SU-8 [44,47] | ~1.57 | Visible to NIR | High mechanical stability, high-aspect-ratio patterning, epoxy-based | Waveguides, resonators, grating structures, and microfluidic-integrated sensors |
Polyimide [48,49] | 1.65–1.70 | Visible to NIR | Excellent thermal and chemical stability, robust mechanical properties | Waveguides for harsh environments, chemically resistant sensors |
COC (Cyclic Olefin Copolymer) [20,49,51] | ~1.53 | Visible to NIR | Low moisture absorption, low birefringence, and biocompatibility | Large-area substrates, low-loss waveguides, bio-integrated sensors |
PDMS (Polydimethylsiloxane) [52,53,54] | ~1.41 | Visible to NIR | High flexibility, biocompatibility, transparent elastomer | Flexible sensors, microfluidic-integrated photonics, tunable structures |
3. Fabrication Techniques Enabling Low Cost and Large Area
3.1. Nanoimprint Lithography (NIL)
3.2. Soft Lithography
3.3. Roll-to-Roll (R2R) Processing
3.4. Inkjet Printing and 3D Printing
Technique | Resolution | Throughput/Scalability | Cost | Material Compatibility | Design Flexibility | Typical Use in Polymer Sensors |
---|---|---|---|---|---|---|
Nanoimprint Lithography (NIL) [104] | High (sub-10 nm possible) | Moderate (batch or step-and-repeat; scalable via R2R NIL) | Moderate (expensive tooling but low per-unit cost) | Broad (polymers, composites, functional layers) | Low (pattern fixed by mold) | High-resolution features for nanoscale sensing structures |
Soft Lithography [105] | High (100 nm–1 µm typical) | Low to moderate (lab scale, small batch production) | Low to moderate (low tooling cost, manual steps) | Wide (elastomers, hydrogels, various polymers) | Moderate (mold defines pattern, but flexible fabrication) | Microfluidics, flexible sensor substrates, surface patterns |
Roll-to-Roll (R2R) [106] | Moderate (10 µm–100 µm typical) | Very high (continuous, large-area production) | Low (low cost per unit at scale) | Mostly flexible substrates (PET, PEN, flexible polymers) | Low to moderate (depends on integrated patterning tech) | Large-area flexible and wearable sensors |
Inkjet Printing [107] | Moderate (20 µm–50 µm typical) | Moderate (depends on printer speed) | Low (digital, no masks required) | Solution-processable polymers, functional inks | High (digital patterning, easy to modify designs) | Patterned electrodes, sensing layers, functional coatings |
3D Printing (e.g., extrusion, photopolymerization) [108] | Low to moderate (10 µm–100 µm, depending on method) | Low to moderate (slow compared to R2R) | Low to moderate (depends on printer type) | Limited (depends on printable polymer and ink formulation) | Very high (complex 3D geometries possible) | Prototyping, custom sensor housings, integrated structures |
4. Polymer Photonic Structures for Sensing
4.1. Waveguides (Planar, Rib, Slot)
4.2. Bragg Gratings
4.3. Photonic Crystal Slabs
4.4. Ring/Disk Resonators
4.5. Interferometric Configurations (e.g., Mach–Zehnder)
5. Applications
5.1. Environmental Monitoring
5.2. Point-of-Care Medical Diagnostics
5.3. Structural Health Monitoring
6. Challenges and Opportunities
7. Future Outlook
7.1. Smart Packaging with Embedded Polymer Photonic Sensors
7.2. Flexible/Wearable Large-Area Photonic Sensor Arrays
7.3. Advances in Printable Photonics and Additive Manufacturing
7.4. Polymer Photonics for Environmental Resilience and Harsh Conditions
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butt, M.A.; Mateos, X.; Piramidowicz, R. Photonics Sensors: A Perspective on Current Advancements, Emerging Challenges, and Potential Solutions (Invited). Phys. Lett. A 2024, 516, 129633. [Google Scholar] [CrossRef]
- Butt, M.A.; Mateos, X. Strategic Insights into Integrated Photonics: Core Concepts, Practical Deployments, and Future Outlook. Appl. Sci. 2024, 14, 6365. [Google Scholar] [CrossRef]
- Zeng, F.; Pang, C.; Tang, H. Sensors on Internet of Things Systems for the Sustainable Development of Smart Cities: A Systematic Literature Review. Sensors 2024, 24, 2074. [Google Scholar] [CrossRef] [PubMed]
- Meriç, M.K. Implementation of a Wireless Sensor Network for Irrigation Management in Drip Irrigation Systems. Sci. Rep. 2025, 15, 14157. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R.; Gonzalez, E.S. Understanding the Adoption of Industry 4.0 Technologies in Improving Environmental Sustainability. Sustain. Oper. Comput. 2022, 3, 203–217. [Google Scholar] [CrossRef]
- Golovastikov, N.V.; Kazanskiy, N.L.; Khonina, S.N. Optical Fiber-Based Structural Health Monitoring: Advancements, Applications, and Integration with Artificial Intelligence for Civil and Urban Infrastructure. Photonics 2025, 12, 615. [Google Scholar] [CrossRef]
- Fallahi, V.; Kordrostami, Z.; Hosseini, M. Sensitivity and Quality Factor Improvement of Photonic Crystal Sensors by Geometrical Optimization of Waveguides and Micro-Ring Resonators Combination. Sci. Rep. 2024, 14, 2001. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. A Review of Photonic Sensors Based on Ring Resonator Structures: Three Widely Used Platforms and Implications of Sensing Applications. Micromachines 2023, 14, 1080. [Google Scholar] [CrossRef]
- Xu, H.; Hafezi, M.; Fan, J.; Taylor, J.M.; Strouse, G.F.; Ahmed, Z. Ultra-Sensitive Chip-Based Photonic Temperature Sensor Using Ring Resonator Structures. Opt. Express 2014, 22, 3098–3104. [Google Scholar] [CrossRef]
- Butt, M.A.; Imran Akca, B.; Mateos, X. Integrated Photonic Biosensors: Enabling Next-Generation Lab-on-a-Chip Platforms. Nanomaterials 2025, 15, 731. [Google Scholar] [CrossRef]
- Butt, M.A. Silicon-on-Insulator Coupled Waveguide-Resonator Sensor: Trade-off between Sensitivity and Other Performance Parameters. Opt. Commun. 2025, 591, 132115. [Google Scholar] [CrossRef]
- Badoni, D.; Gunnella, R.; Salamon, A.; Bonaiuto, V.; Liberali, V.; Salina, G.; De Matteis, F.; Mai, A.; Salvato, M.; Colavecchi, L.; et al. Design and Test of Silicon Photonic Mach-Zehnder Interferometers for Data Transmission Applications. In Proceedings of the 2020 Italian Conference on Optics and Photonics (ICOP), Parma, Italy, 9–11 September 2020; pp. 1–3. [Google Scholar]
- Fehlen, P.; Thomas, G.; Posada, F.G.; Guise, J.; Rusconi, F.; Cerutti, L.; Taliercio, T.; Spitzer, D. III-V Semiconductor Plasmonics for Gas Sensing of Organophosphorous Compounds. In Proceedings of the Quantum Sensing and Nano Electronics and Photonics XIX, San Francisco, CA, USA, 29 January–2 February 2023; SPIE: Bellingham, WA, USA, 2023; Volume PC12430, p. PC1243017. [Google Scholar]
- Lijing, Z.; Zakoldaev, R.A.; Sergeev, M.M.; Veiko, V.P. Fluorescent Bulk Waveguide Sensor in Porous Glass: Concept, Fabrication, and Testing. Nanomaterials 2020, 10, 2169. [Google Scholar] [CrossRef]
- Wen, S.M.; Chui, C.O. CMOS Junctionless Field-Effect Transistors Manufacturing Cost Evaluation. IEEE Trans. Semicond. Manuf. 2013, 26, 162–168. [Google Scholar] [CrossRef]
- Lopez, P.; Mabe, J.; Miró, G.; Etxeberria, L. Low Cost Photonic Sensor for In-Line Oil Quality Monitoring: Methodological Development Process towards Uncertainty Mitigation. Sensors 2018, 18, 2015. [Google Scholar] [CrossRef]
- Castelló, J.G.; Toccafondo, V.; Pérez-Millán, P.; Losilla, N.S.; Cruz, J.L.; Andrés, M.V.; García-Rupérez, J. Real-Time and Low-Cost Sensing Technique Based on Photonic Bandgap Structures. Opt. Lett. 2011, 36, 2707–2709. [Google Scholar] [CrossRef] [PubMed]
- Dias, L.; Shoman, H.; Luan, E.; Jayatilleka, H.; Shekhar, S.; Chrostowski, L.; Jaeger, N.A.F. Cost-Effective Silicon-Photonic Biosensors Using Doped Silicon Detectors and a Broadband Source. Opt. Express 2023, 31, 9135–9145. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.A.; Tyszkiewicz, C.; Karasiński, P.; Zięba, M.; Hlushchenko, D.; Baraniecki, T.; Kaźmierczak, A.; Piramidowicz, R.; Guzik, M.; Bachmatiuk, A. Development of a Low-Cost Silica-Titania Optical Platform for Integrated Photonics Applications. Opt. Express 2022, 30, 23678–23694. [Google Scholar] [CrossRef] [PubMed]
- Khonina, S.N.; Voronkov, G.S.; Grakhova, E.P.; Kazanskiy, N.L.; Kutluyarov, R.V.; Butt, M.A. Polymer Waveguide-Based Optical Sensors—Interest in Bio, Gas, Temperature, and Mechanical Sensing Applications. Coatings 2023, 13, 549. [Google Scholar] [CrossRef]
- Prasanna Kumaar, S.; Sivasubramanian, A. Design of a High-Sensitivity Polymer Double-Slot Waveguide Sensor for Point-of-Care Biomedical Applications. Sens. Int. 2024, 5, 100255. [Google Scholar] [CrossRef]
- Nagar, M.A.; Janner, D. Polymer-Based Optical Guided-Wave Biomedical Sensing: From Principles to Applications. Photonics 2024, 11, 972. [Google Scholar] [CrossRef]
- Shao, Z.; Liu, J.; Zhou, K.; Zhang, Z.; Liang, R.; Qiao, X. Advanced Fabrication of Polymer Waveguide Interferometric Sensor Utilizing Interconnected Holey Fibers. Opt. Express 2024, 32, 18858–18870. [Google Scholar] [CrossRef]
- Prajzler, V.; Chlupaty, V.; Kulha, P.; Neruda, M.; Kopp, S.; Mühlberger, M. Optical Polymer Waveguides Fabricated by Roll-to-Plate Nanoimprinting Technique. Nanomaterials 2021, 11, 724. [Google Scholar] [CrossRef] [PubMed]
- Bruck, R.; Muellner, P.; Kataeva, N.; Koeck, A.; Trassl, S.; Rinnerbauer, V.; Schmidegg, K.; Hainberger, R. Flexible Thin-Film Polymer Waveguides Fabricated in an Industrial Roll-to-Roll Process. Appl. Opt. 2013, 52, 4510–4514. [Google Scholar] [CrossRef] [PubMed]
- Hiltunen, M.; Hiltunen, J.; Stenberg, P.; Petäjä, J.; Heinonen, E.; Vahimaa, P.; Karioja, P. Polymeric Slot Waveguide at Visible Wavelength. Opt. Lett. 2012, 37, 4449–4451. [Google Scholar] [CrossRef] [PubMed]
- Kocabas, A.; Aydinli, A. Polymeric Waveguide Bragg Grating Filter Using Soft Lithography. Opt. Express 2006, 14, 10228–10232. [Google Scholar] [CrossRef]
- Ngo, G.L.; Nguyen, L.; Hermier, J.-P.; Lai, N.D. On-Chip 3D Printing of Polymer Waveguide-Coupled Single-Photon Emitter Based on Colloidal Quantum Dots. Polymers 2023, 15, 2201. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, Y.S. Flexible Photonic Materials and Devices: Synthetic Strategies, Sensing Properties, and Wearable Applications. Adv. Mater. 2024, 2415856. [Google Scholar] [CrossRef]
- Paz, L.F.; Caño-García, M.; Geday, M.A.; Otón, J.M.; Quintana, X. Identification of Dyes and Matrices for Dye Doped Polymer Waveguide Emitters Covering the Visible Spectrum. Sci. Rep. 2022, 12, 6142. [Google Scholar] [CrossRef]
- Li, H.; Meng, W.; Cao, L.; Zhang, L.; Liu, Y.; Lin, Z.; Zhao, R.; Song, Z.; Ren, F.; Zhang, S.; et al. Fabrication and Characterization of Polymer Optical Waveguide Bragg Grating for Pulse Signal Sensing. Opt. Express 2023, 31, 32458–32467. [Google Scholar] [CrossRef]
- Lee, E.-S.; Chun, K.-W.; Jin, J.; Lee, S.-S.; Oh, M.-C. Monolithic Integration of Polymer Waveguide Phase Modulators with Silicon Nitride Waveguides Using Adiabatic Transition Tapers. Opt. Express 2023, 31, 4760–4769. [Google Scholar] [CrossRef]
- Park, T.-H.; Kim, S.-M.; Oh, M.-C. Polymer-Waveguide Bragg-Grating Devices Fabricated Using Phase-Mask Lithography. Curr. Opt. Photon. 2019, 3, 401–407. [Google Scholar]
- Roth, G.-L.; Kefer, S.; Hessler, S.; Esen, C.; Hellmann, R. Polymer Photonic Crystal Waveguides Generated by Femtosecond Laser. Laser Photonics Rev. 2021, 15, 2100215. [Google Scholar] [CrossRef]
- La, T.L.; Bui, B.N.; Nguyen, T.T.N.; Pham, T.L.; Tran, Q.T.; Tong, Q.C.; Mikulich, A.; Nguyen, T.P.; Nguyen, T.T.T.; Lai, N.D. Design and Realization of Polymeric Waveguide/Microring Structures for Telecommunication Domain. Micromachines 2023, 14, 1068. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wu, J.; Chen, K.; Zheng, Y.; Deng, G.; Zhang, X.; Li, Z.; Chiang, K.S. Polymer Waveguide Mach-Zehnder Interferometer Coated with Dipolar Polycarbonate for on-Chip Nitroaromatics Detection. Sens. Actuators B Chem. 2020, 305, 127406. [Google Scholar] [CrossRef]
- Guo, J.; Yang, C.; Dai, Q.; Kong, L. Soft and Stretchable Polymeric Optical Waveguide-Based Sensors for Wearable and Biomedical Applications. Sensors 2019, 19, 3771. [Google Scholar] [CrossRef]
- Ahmed, I.; Ali, M.; Elsherif, M.; Butt, H. UV Polymerization Fabrication Method for Polymer Composite Based Optical Fiber Sensors. Sci. Rep. 2023, 13, 10823. [Google Scholar] [CrossRef]
- Desidery, L.; Lanotte, M. 1-Polymers and Plastics: Types, Properties, and Manufacturing. In Plastic Waste for Sustainable Asphalt Roads; Giustozzi, F., Nizamuddin, S., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Delhi, India, 2022; pp. 3–28. ISBN 978-0-323-85789-5. [Google Scholar]
- Potaufeux, J.-E.; Odent, J.; Notta-Cuvier, D.; Lauro, F.; Raquez, J.-M. A Comprehensive Review of the Structures and Properties of Ionic Polymeric Materials. Polym. Chem. 2020, 11, 5914–5936. [Google Scholar] [CrossRef]
- Puszka, A.; Podkościelna, B. Special Issue: Synthesis, Processing, Structure and Properties of Polymer Materials. Polymers 2022, 14, 4550. [Google Scholar] [CrossRef]
- Sowa, S.; Watanabe, W.; Tamaki, T.; Nishii, J.; Itoh, K. Symmetric Waveguides in Poly(Methyl Methacrylate) Fabricated by Femtosecond Laser Pulses. Opt. Express 2006, 14, 291–297. [Google Scholar] [CrossRef]
- Zheng, L.; Keppler, N.; Zhang, H.; Behrens, P.; Roth, B. Planar Polymer Optical Waveguide with Metal-Organic Framework Coating for Carbon Dioxide Sensing. Adv. Mater. Technol. 2022, 7, 2200395. [Google Scholar] [CrossRef]
- Nitiss, E.; Tokmakovs, A.; Pudzs, K.; Busenbergs, J.; Rutkis, M. All-Organic Electro-Optic Waveguide Modulator Comprising SU-8 and Nonlinear Optical Polymer. Opt. Express 2017, 25, 31036–31044. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Y.; Sun, Y.; Zhang, S.; An, Z.; Zhang, S.; Zhang, C.; Zhang, Z.; Mao, Q.; García, J.D.P. Design and Fabrication of SU-8 Polymer Arrayed Waveguide Gratings Based on Flexible PDMS Substrates. Appl. Opt. 2022, 61, 2213–2218. [Google Scholar] [CrossRef] [PubMed]
- Buzzin, A.; Asquini, R.; Caputo, D.; de Cesare, G. On-Glass Integrated SU-8 Waveguide and Amorphous Silicon Photosensor for On-Chip Detection of Biomolecules: Feasibility Study on Hemoglobin Sensing. Sensors 2021, 21, 415. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Pandraud, G.; Zhang, Y.; French, P. Single-Mode Tapered Vertical SU-8 Waveguide Fabricated by E-Beam Lithography for Analyte Sensing. Sensors 2019, 19, 3383. [Google Scholar] [CrossRef]
- Maruno, T.; Sakata, T.; Ishii, T.; Maruo, Y.Y.; Sasaki, S.; Tamamura, T. Polyimide Optical Waveguides Fabricated by Direct Electron Beam Writing. In Proceedings of the Organic Thin Films for Photonic Applications (1995); Optica Publishing Group: Washington, DC, USA, 1995; p. MA.3. [Google Scholar]
- Wessa, T.; Barié, N.; Rapp, M.; Ache, H.J. Polyimide, a New Shielding Layer for Sensor Applications. Sens. Actuators B Chem. 1998, 53, 63–68. [Google Scholar] [CrossRef]
- Mavrona, E.; Graf, J.; Hack, E.; Zolliker, P. Optimized 3D Printing of THz Waveguides with Cyclic Olefin Copolymer. Opt. Mater. Express 2021, 11, 2495–2504. [Google Scholar] [CrossRef]
- Okagbare, P.I.; Emory, J.M.; Datta, P.; Goettert, J.; Soper, S.A. Fabrication of a Cyclic Olefin Copolymer Planar Waveguide Embedded in a Multi-Channel Poly(Methyl Methacrylate) Fluidic Chip for Evanescence Excitation. Lab. Chip 2010, 10, 66–73. [Google Scholar] [CrossRef]
- Wiesmayr, B.; Höglinger, M.; Krieger, M.; Lindner, P.; Baumgartner, W.; Stadler, A.T. A Polydimethylsiloxane (PDMS) Waveguide Sensor That Mimics a Neuromast to Measure Fluid Flow Velocity. Sensors 2019, 19, 925. [Google Scholar] [CrossRef]
- Zimmermann, C.A.; Amouzou, K.N.; Ung, B. Recent Advances in PDMS Optical Waveguides: Properties, Fabrication, and Applications. Adv. Opt. Mater. 2025, 13, 2401975. [Google Scholar] [CrossRef]
- Sarkar, S.; Poulose, S.; Sahoo, P.K.; Joseph, J. Flexible and Stretchable Guided-Mode Resonant Optical Sensor: Single-Step Fabrication on a Surface Engineered Polydimethylsiloxane Substrate. OSA Contin. 2018, 1, 1277–1286. [Google Scholar] [CrossRef]
- Janeiro, R.; Flores, R.; Viegas, J. Silicon Photonics Waveguide Array Sensor for Selective Detection of VOCs at Room Temperature. Sci. Rep. 2019, 9, 17099. [Google Scholar] [CrossRef]
- Ahmed, K.K.; Muheddin, D.Q.; Mohammed, P.A.; Ezat, G.S.; Murad, A.R.; Ahmed, B.Y.; Hussen, S.A.; Ahmed, T.Y.; Hamad, S.M.; Abdullah, O.G.; et al. A Brief Review on Optical Properties of Polymer Composites: Insights into Light-Matter Interaction from Classical to Quantum Transport Point of View. Results Phys. 2024, 56, 107239. [Google Scholar] [CrossRef]
- Lim, J.W. Polymer Materials for Optoelectronics and Energy Applications. Materials 2024, 17, 3698. [Google Scholar] [CrossRef] [PubMed]
- Pitois, C.; Hult, A.; Wiesmann, D. Absorption and Scattering in Low-Loss Polymer Optical Waveguides. J. Opt. Soc. Am. B 2001, 18, 908–912. [Google Scholar] [CrossRef]
- Rudge, A.; Davey, J.; Raistrick, I.; Gottesfeld, S.; Ferraris, J.P. Conducting Polymers as Active Materials in Electrochemical Capacitors. J. Power Sources 1994, 47, 89–107. [Google Scholar] [CrossRef]
- Khaleque, M.A.; Aly Saad Aly, M.; Khan, M.Z.H. Chemical and Electrochemical Synthesis of Doped Conducting Polymers and Their Application in Supercapacitors: An Overview. Chem. Eng. J. 2025, 507, 160444. [Google Scholar] [CrossRef]
- Khdary, N.H.; Almuarqab, B.T.; El Enany, G. Nanoparticle-Embedded Polymers and Their Applications: A Review. Membranes 2023, 13, 537. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Salem, A.; Al-Ahmadi, A.N.; Mwafy, E.A.; Elsharkawy, W.B.; Nafee, S.S.; Alshammary, A.J.; Toghan, A.; Motawea, M.M. Nickel Oxide Nanoparticles Embedded in Polymer-Matrix Nanocomposite Prepared by Nanosecond Laser Ablation Method for Optoelectronic Applications. Radiat. Phys. Chem. 2025, 226, 112262. [Google Scholar] [CrossRef]
- Rezaei, F.; Dinari, M. Cu Nanoparticles Embedded in the Porous Organic Polymer as Highly Effective Catalysts for Nitroaromatics Reduction. Microporous Mesoporous Mater. 2021, 325, 111339. [Google Scholar] [CrossRef]
- Imato, K.; Ooyama, Y. Stimuli-Responsive Smart Polymers Based on Functional Dyes. Polym. J. 2024, 56, 1093–1109. [Google Scholar] [CrossRef]
- Milvich, J.; Kohler, D.; Freude, W.; Koos, C. Surface Sensing with Integrated Optical Waveguides: A Design Guideline. Opt. Express 2018, 26, 19885–19906. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, Y.; Zheng, L.; Steinbach, L.; Günther, A.; Schneider, A.; Roth, B. Low-Cost Scalable Fabrication of Functionalized Optical Waveguide Arrays for Gas Sensing Application. Int. J. Adv. Manuf. Technol. 2025, 138, 617–633. [Google Scholar] [CrossRef]
- Sharma, K.; Mohammed, W.S.; Bora, T. Development of Methacrylate-Based Polymer Waveguides as an Optical Sensing Element. In Proceedings of the Optical Waveguide and Laser Sensors IV, National Harbor, MD, USA, 15–17 April 2025; SPIE: Bellingham, WA, USA, 2025; Volume 13467, p. 134670I. [Google Scholar]
- Myndrul, V.; Arreguin-Campos, R.; Iatsunskyi, I.; Di Scala, F.; Eersels, K.; van Grinsven, B. Photonic Sensor Based on Surface Imprinted Polymers for Enhanced Point-of-Care Diagnosis of Bacterial Urinary Tract Infections. Biosens. Bioelectron. 2025, 268, 116916. [Google Scholar] [CrossRef] [PubMed]
- Ting, Y.-C.; Shy, S.-L. Nano-Imprint Lithography Using Poly (Methyl Methacrylate) (PMMA) and Polystyrene (PS) Polymers. In Proceedings of the Alternative Lithographic Technologies VIII, San Jose, CA, USA, 22–25 February 2016; SPIE: Bellingham, WA, USA, 2016; Volume 9777, pp. 316–322. [Google Scholar]
- Eryürek, M.; Tasdemir, Z.; Karadag, Y.; Anand, S.; Kilinc, N.; Alaca, B.E.; Kiraz, A. Integrated Humidity Sensor Based on SU-8 Polymer Microdisk Microresonator. Sens. Actuators B Chem. 2017, 242, 1115–1120. [Google Scholar] [CrossRef]
- Zhang, T.; Chai, Y.; Wang, S.; Yu, J.; Jiang, S.; Zhu, W.; Fang, Z.; Li, B. Recent Study Advances in Flexible Sensors Based on Polyimides. Sensors 2023, 23, 9743. [Google Scholar] [CrossRef]
- Liedert, C.; Rannaste, L.; Kokkonen, A.; Huttunen, O.-H.; Liedert, R.; Hiltunen, J.; Hakalahti, L. Roll-to-Roll Manufacturing of Integrated Immunodetection Sensors. ACS Sens. 2020, 5, 2010–2017. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, J.; Gao, Q.; Zhang, J.; Zhang, J.; Omisore, O.M.; Wang, L.; Li, H. Polydimethylsiloxane (PDMS)-Based Flexible Resistive Strain Sensors for Wearable Applications. Appl. Sci. 2018, 8, 345. [Google Scholar] [CrossRef]
- Lee, J.K.; Lee, T.S. Newly Synthesized Polybenzoxazole Derivative with an Adjacent Hydroxyphenyl Ring for Optical Sensing. J. Polym. Sci. Part. A Polym. Chem. 2005, 43, 1397–1403. [Google Scholar] [CrossRef]
- Zaitsev, N.K.; Melnikov, P.V.; Alferov, V.A.; Kopytin, A.V.; German, K.E. Stable Optical Oxygen Sensing Material Based on Perfluorinated Polymer and Fluorinated Platinum(II) and Palladium(II) Porphyrins. Procedia Eng. 2016, 168, 309–312. [Google Scholar] [CrossRef]
- ORMOCER® at Fraunhofer ISC. Available online: https://www.ormocere.de/en.html (accessed on 14 October 2023).
- Hu, F.; Lin, N.; Liu, X.Y. Interplay between Light and Functionalized Silk Fibroin and Applications. iScience 2020, 23, 101035. [Google Scholar] [CrossRef]
- Anantha-Iyengar, G.; Shanmugasundaram, K.; Nallal, M.; Lee, K.-P.; Whitcombe, M.J.; Lakshmi, D.; Sai-Anand, G. Functionalized Conjugated Polymers for Sensing and Molecular Imprinting Applications. Prog. Polym. Sci. 2019, 88, 1–129. [Google Scholar] [CrossRef]
- Butt, M.A. Integrated Optics: Platforms and Fabrication Methods. Encyclopedia 2023, 3, 824–838. [Google Scholar] [CrossRef]
- Park, J.; Lee, K.-T.; Yeon, G.; Choi, J.; Kim, M.; Han, B.; Baac, H.W.; Guo, L.J.; Ok, J.G. Demonstration of the One-Step Continuous Fabrication of Flexible Polymer Ridge Waveguides via Nanochannel-Guided Lithography. J. Ind. Eng. Chem. 2021, 95, 286–291. [Google Scholar] [CrossRef]
- Diez, M.; Raimbault, V.; Joly, S.; Oyhenart, L.; Doucet, J.B.; Obieta, I.; Dejous, C.; Bechou, L. Direct Patterning of Polymer Optical Periodic Nanostructures on CYTOP for Visible Light Waveguiding. Opt. Mater. 2018, 82, 21–29. [Google Scholar] [CrossRef]
- Han, X.-Y.; Wu, Z.-L.; Yang, S.-C.; Shen, F.-F.; Liang, Y.-X.; Wang, L.-H.; Wang, J.-Y.; Ren, J.; Jia, L.-Y.; Zhang, H.; et al. Recent Progress of Imprinted Polymer Photonic Waveguide Devices and Applications. Polymers 2018, 10, 603. [Google Scholar] [CrossRef]
- Kim, W.; Yoon, G.; Kim, J.; Jeong, H.; Kim, Y.; Choi, H.; Badloe, T.; Rho, J.; Lee, H. Thermally-Curable Nanocomposite Printing for the Scalable Manufacturing of Dielectric Metasurfaces. Microsyst. Nanoeng. 2022, 8, 73. [Google Scholar] [CrossRef]
- Yu, G.; Mao, X.; Ding, H.; Yang, F.; Wang, X. Inverse-Designed Polarization-Insensitive Metasurface Holography Fabricated by Nanoimprint Lithography. Opt. Lett. 2024, 49, 6845–6848. [Google Scholar] [CrossRef]
- Choi, C.-G.; Han, Y.-T.; Kim, J.T. Application of UV Nanoimprint Lithography in Polymer Photonic Nano-Systems. In Proceedings of the 2006 IEEE Nanotechnology Materials and Devices Conference, Gyeongju, Republic of Korea, 22–25 October 2006; Volume 1, pp. 536–537. [Google Scholar]
- OrmoCore and OrmoClad—Microresist; Microresist Technology: Berlin, Germany, 2020.
- Khan, M.U.; Justice, J.; Petäjä, J.; Korhonen, T.; Boersma, A.; Wiegersma, S.; Karppinen, M.; Corbett, B. Multi-Level Single Mode 2D Polymer Waveguide Optical Interconnects Using Nano-Imprint Lithography. Opt. Express 2015, 23, 14630–14639. [Google Scholar] [CrossRef]
- Chuang, W.-C.; Ho, C.-T.; Chang, W.-C. Fabrication of Polymer Waveguides by a Replication Method. Appl. Opt. 2006, 45, 8304–8307. [Google Scholar] [CrossRef]
- Huang, Y.; Paloczi, G.T.; Scheuer, J.; Yariv, A. Soft Lithography Replication of Polymeric Microring Optical Resonators. Opt. Express 2003, 11, 2452–2458. [Google Scholar] [CrossRef]
- Rolland, J.P.; Hagberg, E.C.; Denison, G.M.; Carter, K.R.; De Simone, J.M. High-Resolution Soft Lithography: Enabling Materials for Nanotechnologies. Angew. Chem. Int. Ed. 2004, 43, 5796–5799. [Google Scholar] [CrossRef] [PubMed]
- Moran, I.W.; Cheng, D.F.; Jhaveri, S.B.; Carter, K.R. High-Resolution Soft Lithography of Thin Film Resists Enabling Nanoscopic Pattern Transfer. Soft Matter 2007, 4, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Poon, J.K.S.; Huang, Y.; Paloczi, G.T.; Yariv, A. Soft Lithography Replica Molding of Critically Coupled Polymer Microring Resonators. IEEE Photonics Technol. Lett. 2004, 16, 2496–2498. [Google Scholar] [CrossRef]
- Bruck, R.; Muellner, P.; Kataeva, N.; Koeck, A.; Hainberger, R.; Trassl, S.; Rinnerbauer, V.; Schmidegg, K. Roll-to-Roll Fabrication of Thin Foil-Based Optical Waveguides with Grating Couplers. In Proceedings of the 2012 17th Opto-Electronics and Communications Conference, Busan, Republic of Korea, 2–6 July 2012; pp. 249–250. [Google Scholar]
- Yu, S.; Zuo, H.; Gu, T.; Hu, J. A Flexible Polymer Waveguide Platform with Low-Loss Optical Interfaces. In Proceedings of the 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 21–25 June 2021; p. 1. [Google Scholar]
- Kronenfeld, J.M.; Rother, L.; Saccone, M.A.; Dulay, M.T.; DeSimone, J.M. Roll-to-Roll, High-Resolution 3D Printing of Shape-Specific Particles. Nature 2024, 627, 306–312. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.Y.; Choi, J.H.; Ok, J.G.; Kwak, M.K. Scalable Fabrication of Flexible Microstencils by Using Sequentially Induced Dewetting Phenomenon. ACS Omega 2017, 2, 1097–1103. [Google Scholar] [CrossRef]
- Wolfer, T.; Bollgruen, P.; Mager, D.; Overmeyer, L.; Korvink, J.G. Flexographic and Inkjet Printing of Polymer Optical Waveguides for Fully Integrated Sensor Systems. Procedia Technol. 2014, 15, 521–529. [Google Scholar] [CrossRef]
- Lin, C.; Jia, X.; Chen, C.; Yang, C.; Li, X.; Shao, M.; Yu, Y.; Zhang, Z. Direct Ink Writing 3D-Printed Optical Waveguides for Multi-Layer Interconnect. Opt. Express 2023, 31, 11913–11922. [Google Scholar] [CrossRef]
- Butt, M.A. Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration. Coatings 2022, 12, 1115. [Google Scholar] [CrossRef]
- Sreenivasan, S.V. Nanoimprint Lithography Steppers for Volume Fabrication of Leading-Edge Semiconductor Integrated Circuits. Microsyst. Nanoeng. 2017, 3, 17075. [Google Scholar] [CrossRef]
- Moon, C.H.; Han, K.-S.; Kim, M.; Oh, D.K.; Yi, S.; Kim, T.; Kim, H.; Hwang, J.; Nam, J.G.; Lee, D.-E.; et al. Scaling up the Sub-50 Nm-Resolution Roll-to-Roll Nanoimprint Lithography Process via Large-Area Tiling of Flexible Molds and Uniform Linear UV Curing. J. Mech. Sci. Technol. 2023, 37, 271–278. [Google Scholar] [CrossRef]
- Klestova, A.; Cheplagin, N.; Keller, K.; Slabov, V.; Zaretskaya, G.; Vinogradov, A.V. Inkjet Printing of Optical Waveguides for Single-Mode Operation. Adv. Opt. Mater. 2019, 7, 1801113. [Google Scholar] [CrossRef]
- Theiler, P.M.; Lütolf, F.; Ferrini, R. Non-Contact Printing of Optical Waveguides Using Capillary Bridges. Opt. Express 2018, 26, 11934–11939. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.J. Nanoimprint Lithography: Methods and Material Requirements. Adv. Mater. 2007, 19, 495–513. [Google Scholar] [CrossRef]
- Xia, Y.; Whitesides, G.M. Soft Lithography. Angew. Chem. Int. Ed. 1998, 37, 550–575. [Google Scholar] [CrossRef]
- Yi, P.; Wu, H.; Zhang, C.; Peng, L.; Lai, X. Roll-to-Roll UV Imprinting Lithography for Micro/Nanostructures. J. Vac. Sci. Technol. B 2015, 33, 060801. [Google Scholar] [CrossRef]
- Kamyshny, A.; Magdassi, S. Conductive Nanomaterials for Printed Electronics. Small 2014, 10, 3515–3535. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. Part. B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Malheiros-Silveira, G.N.; Finardi, C.A.; Van Etten, E.A.M.A.; Bürger, T.S.; da Silva, R.C.G.; Daltrini, A.M.; Panepucci, R.R. Foundry Polymer-Based Inverted-Rib Waveguides. In Proceedings of the 2018 SBFoton International Optics and Photonics Conference (SBFoton IOPC), Campinas, Brazil, 8–10 October 2018; pp. 1–3. [Google Scholar]
- Prajzler, V.; Nekvindova, P.; Hyps, P.; Brychta, J.; Jerabek, V. Polymer Planar Optical Waveguides for Optical Interconnections. In Proceedings of the 2015 Conference on Lasers and Electro-Optics Pacific Rim (2015), Busan, Republic of Korea, 24–28 August 2015; Optica Publishing Group: Washington, DC, USA, 2015; p. 27P_43. [Google Scholar]
- Butt, M.A. Emerging Trends in Thermo-Optic and Electro-Optic Materials for Tunable Photonic Devices. Materials 2025, 18, 2782. [Google Scholar] [CrossRef]
- Prasanna Kumaar, S.; Sivasubramanian, A. Analysis of BCB and SU 8 Photonic Waveguide in MZI Architecture for Point-of-Care Devices. Sens. Int. 2023, 4, 100207. [Google Scholar] [CrossRef]
- Han, J.; Wu, X.; Ge, X.; Xie, Y.; Song, G.; Liu, L.; Yi, Y. Highly Sensitive Liquid M-Z Waveguide Sensor Based on Polymer Suspended Slot Waveguide Structure. Polymers 2022, 14, 3967. [Google Scholar] [CrossRef]
- Bettotti, P.; Pitanti, A.; Rigo, E.; De Leonardis, F.; Passaro, V.M.N.; Pavesi, L. Modeling of Slot Waveguide Sensors Based on Polymeric Materials. Sensors 2011, 11, 7327–7340. [Google Scholar] [CrossRef]
- Hiltunen, M.; Hiltunen, J.; Stenberg, P.; Aikio, S.; Kurki, L.; Vahimaa, P.; Karioja, P. Polymeric Slot Waveguide Interferometer for Sensor Applications. Opt. Express 2014, 22, 7229–7237. [Google Scholar] [CrossRef]
- Broadway, C.; Min, R.; Leal-Junior, A.G.; Marques, C.; Caucheteur, C. Toward Commercial Polymer Fiber Bragg Grating Sensors: Review and Applications. J. Light. Technol. 2019, 37, 2605–2615. [Google Scholar] [CrossRef]
- Ngiejungbwen, L.A.; Hamdaoui, H.; Chen, M.-Y. Polymer Optical Fiber and Fiber Bragg Grating Sensors for Biomedical Engineering Applications: A Comprehensive Review. Opt. Laser Technol. 2024, 170, 110187. [Google Scholar] [CrossRef]
- Goraus, M.; Pudis, D.; Urbancova, P.; Martincek, I.; Gaso, P. Surface-Relief Bragg Grating Waveguides Based on IP-Dip Polymer for Photonic Applications. Appl. Surf. Sci. 2018, 461, 113–116. [Google Scholar] [CrossRef]
- Smirnova, O.; Sajzew, R.; Finkelmeyer, S.J.; Asadov, T.; Chattopadhyay, S.; Wieduwilt, T.; Reupert, A.; Presselt, M.; Knebel, A.; Wondraczek, L. Micro-Optical Elements from Optical-Quality ZIF-62 Hybrid Glasses by Hot Imprinting. Nat. Commun. 2024, 15, 5079. [Google Scholar] [CrossRef]
- Nambiar, S.; P., V.; Singh, R.; Rawat, P.; Selvaraja, S.K. High-Efficiency Broadband out-of-Plane Fiber-to-Polymer Waveguide Grating Coupler. Opt. Lett. 2024, 49, 6972–6975. [Google Scholar] [CrossRef]
- Wang, W.; Wu, J.; Chen, K.; Jin, W.; Chiang, K.S. Ultra-Broadband Mode Conversion with Length-Apodized Long-Period Grating on Polymer Waveguide. In Proceedings of the Frontiers in Optics 2017 (2017), Washington, DC, USA, 18–21 September 2017; Optica Publishing Group: Washington, DC, USA, 2017; p. FW6A.2. [Google Scholar]
- Lin, H.; Xing, Y.; Chen, X.; Zhang, S.; Forsberg, E.; He, S. Polymer-Based Planar Waveguide Chirped Bragg Grating for High-Resolution Tactile Sensing. Opt. Express 2022, 30, 20871–20882. [Google Scholar] [CrossRef]
- Zhang, Z.; Abdalwareth, A.; Flachenecker, G.; Angelmahr, M.; Schade, W. Polymer Waveguide Sensor Based on Evanescent Bragg Grating for Lab-on-a-Chip Applications. Sensors 2024, 24, 1234. [Google Scholar] [CrossRef]
- Ameen, A.A.; Panda, A.; Mehaney, A.; Almawgani, A.H.M.; Pradhan, D.D.; Ali, G.A.; Ali, Y.A.A.; Elsayed, H.A. An Investigation of High-Performance Pressure Sensor Employing a Polymer-Defect-Based 1D Annular Photonic Crystal. Photonics 2023, 10, 731. [Google Scholar] [CrossRef]
- Hermannsson, P.G.; Sørensen, K.T.; Vannahme, C.; Smith, C.L.C.; Klein, J.J.; Russew, M.-M.; Grützner, G.; Kristensen, A. All-Polymer Photonic Crystal Slab Sensor. Opt. Express 2015, 23, 16529–16539. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Maeno, K.; Aki, S.; Sueyoshi, K.; Hisamoto, H.; Endo, T. Design and Fabrication of a Visible-Light-Compatible, Polymer-Based Photonic Crystal Resonator and Waveguide for Sensing Applications. Micromachines 2018, 9, 410. [Google Scholar] [CrossRef] [PubMed]
- Golvari, P.; Kuebler, S.M. Fabrication of Functional Microdevices in SU-8 by Multi-Photon Lithography. Micromachines 2021, 12, 472. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, M.; Goddard, J.M.; Erickson, D. Nanoporous Polymer Ring Resonators for Biosensing. Opt. Express 2012, 20, 245–255. [Google Scholar] [CrossRef]
- Madani, A.; Azarinia, H.; Latifi, H. Design and Fabrication of a Polymer Micro Ring Resonator with Novel Optical Material at Add/Drop Geometry Using Laser Beam Direct Write Lithography Technique. Optik 2013, 124, 1746–1748. [Google Scholar] [CrossRef]
- Girault, P.; Lorrain, N.; Poffo, L.; Guendouz, M.; Lemaitre, J.; Carré, C.; Gadonna, M.; Bosc, D.; Vignaud, G. Integrated Polymer Micro-Ring Resonators for Optical Sensing Applications. J. Appl. Phys. 2015, 117, 104504. [Google Scholar] [CrossRef]
- Zhang, C.; Ling, T.; Chen, S.-L.; Guo, L.J. Ultrabroad Bandwidth and Highly Sensitive Optical Ultrasonic Detector for Photoacoustic Imaging. ACS Photonics 2014, 1, 1093–1098. [Google Scholar] [CrossRef]
- Tu, X.; Chen, S.-L.; Song, C.; Huang, T.; Guo, L.J. Ultrahigh Q Polymer Microring Resonators for Biosensing Applications. IEEE Photonics J. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Xiao, Y.; Hofmann, M.; Wang, Z.; Sherman, S.; Zappe, H. Design of All-Polymer Asymmetric Mach–Zehnder Interferometer Sensors. Appl. Opt. 2016, 55, 3566–3573. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, X.; Wang, T.; Huang, G. Development and Characterization of an Asymmetric MZI Temperature Sensor Using Polymer Waveguides for Extended Temperature Measurement Scopes. Photonics 2025, 12, 491. [Google Scholar] [CrossRef]
- Ma, X.X.; Chen, K.X.; Wu, J.Y. Cost-Effective Mach-Zehnder Interferometer Liquid Refractive Index Sensor Based on Conventional Polymer Strip Waveguide. IEEE Photonics J. 2021, 13, 1–9. [Google Scholar] [CrossRef]
- Chen, M.-Q.; Lin, Z.-Y.; Zhao, Y. Femtosecond Laser Direct-Writing On-Chip MZI Temperature Sensor Based on Polymer Waveguides. IEEE Trans. Instrum. Meas. 2023, 72, 1–8. [Google Scholar] [CrossRef]
- Hofmann, M.; Xiao, Y.; Sherman, S.; Gleissner, U.; Schmidt, T.; Zappe, H. Asymmetric Mach–Zehnder Interferometers without an Interaction Window in Polymer Foils for Refractive Index Sensing. Appl. Opt. 2016, 55, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Mu, X.; Liu, S.; Guo, L.; Liu, Z.; Feng, S.; Xu, J.; Tong, Z.; Qi, Z.-M. A New Strategy for Real-Time Humidity Detection: Polymer-Coated Optical Waveguide Sensor. Chemosensors 2022, 10, 63. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.; Kou, Y.; Tong, D.; Wang, A.; Niu, C.; Meng, H.; Li, S.; Geng, T.; Sun, W. Highly-Sensitive Temperature Sensor Based on Photopolymerized-Waveguide Embedded Mach-Zehnder Interferometer. Opt. Express 2023, 31, 27332–27344. [Google Scholar] [CrossRef]
- Bamiedakis, N.; Hutter, T.; Penty, R.V.; White, I.H.; Elliott, S.R. PCB-Integrated Optical Waveguide Sensors: An Ammonia Gas Sensor. J. Light. Technol. 2013, 31, 1628–1635. [Google Scholar] [CrossRef]
- Lee, S.; Lee, E.-H.; Lee, S.-W. A Flexible and Attachable Colorimetric Film Sensor for the Detection of Gaseous Ammonia. Biosensors 2022, 12, 664. [Google Scholar] [CrossRef]
- Yeo, J.-E.; Ko, J.H.; Lee, S.H.; Song, Y.M. Wearable Image-Based Colorimetric Sensor for Real-Time Gas Detection with High Chromaticity. Adv. Electron. Mater. 2025, 11, 2400977. [Google Scholar] [CrossRef]
- Chou, P.-C.; Chen, S.-H.; Chang, C.-J.; Lu, C.-H.; Chen, J.-K. Detection of Heavy Metal Ion Using Photonic Crystals of Polymer Brushes with Reflective Laser Beam System. Appl. Surf. Sci. 2022, 585, 152718. [Google Scholar] [CrossRef]
- Fenzl, C.; Kirchinger, M.; Hirsch, T.; Wolfbeis, O.S. Photonic Crystal-Based Sensing and Imaging of Potassium Ions. Chemosensors 2014, 2, 207–218. [Google Scholar] [CrossRef]
- Das, A.; Babu, A.; Chakraborty, S.; Van Guyse, J.F.R.; Hoogenboom, R.; Maji, S. Poly(N-Isopropylacrylamide) and Its Copolymers: A Review on Recent Advances in the Areas of Sensing and Biosensing. Adv. Funct. Mater. 2024, 34, 2402432. [Google Scholar] [CrossRef]
- Irawan, R.; Cheng, Y.H.; Ng, W.M.; Aung, M.M.; Lao, I.K.; Thaveeprungsriporn, V. Polymer Waveguide Sensor for Early Diagnostic and Wellness Monitoring. Biosens. Bioelectron. 2011, 26, 3666–3669. [Google Scholar] [CrossRef]
- Yi, P.F.; Shen, P.; Zheng, Y.; Chen, C.M.; Liang, L.G.; Wang, J.H.; Guan, L.C.S.; Zhang, D.M. Metal-Printing Directly Defined Polymer Optical Waveguide Sensors for Detecting Effective Anti-Inflammatory Concentrations of Peimine as Fritillaria Alkaloid Drugs. Opt. Mater. Express 2017, 7, 2230–2241. [Google Scholar] [CrossRef]
- Cicala, G.; Arcadio, F.; Zeni, L.; Saitta, L.; Tosto, C.; Fragalà, M.E.; Del Prete, D.; Cennamo, N. Plasmonic Sensors Based on 3D-Printed Polymer Waveguides Covered by a Metals Bilayer. In Proceedings of the 2022 IEEE Sensors Applications Symposium (SAS), Sundsvall, Sweden, 1–3 August 2022; pp. 1–4. [Google Scholar]
- Zhou, Y.; Xu, Y.; Xu, G.; Sugihara, O.; Cai, B. Molecularly Imprinted Polymer-Coated Optical Waveguide for Attogram Sensing. ACS Appl. Mater. Interfaces 2022, 14, 16727–16734. [Google Scholar] [CrossRef] [PubMed]
- Walter, J.-G.; Alwis, L.S.M.; Roth, B.; Bremer, K. All-Optical Planar Polymer Waveguide-Based Biosensor Chip Designed for Smartphone-Assisted Detection of Vitamin D. Sensors 2020, 20, 6771. [Google Scholar] [CrossRef] [PubMed]
- Pozo, F.; Tibaduiza, D.A.; Vidal, Y. Sensors for Structural Health Monitoring and Condition Monitoring. Sensors 2021, 21, 1558. [Google Scholar] [CrossRef] [PubMed]
- Tanusha, D.; Badhulika, S. Comparative Analysis of Micro Patterned PDMS-Based Piezoresistive Pressure Sensors with Multifunctional Strain and Health Monitoring Applications. Sens. Actuators A Phys. 2024, 369, 115139. [Google Scholar] [CrossRef]
- Velázquez-Carreón, F.; Pérez-Alonzo, A.; Sandoval-Romero, G.E.; Sánchez-Pérez, C. Enhanced PDMS-Embedded FBG Devices for Displacement Sensing. Opt. Laser Technol. 2024, 179, 111269. [Google Scholar] [CrossRef]
- Zubia, J.; García, I.; Villatoro, J.; Illarramendi, M.A.; Mateo, J.; Vázquez, C. Polymer Optical Fiber Sensors for Aircraft Structural and Engine Health Monitoring. In Proceedings of the 2017 19th International Conference on Transparent Optical Networks (ICTON), Catalonia, Spain, 2–6 July 2017; p. 1. [Google Scholar]
- López-Higuera, J.M.; Cobo, L.R.; Incera, A.Q.; Cobo, A. Fiber Optic Sensors in Structural Health Monitoring. J. Light. Technol. 2011, 29, 587–608. [Google Scholar] [CrossRef]
- Soman, R.; Wee, J.; Peters, K. Optical Fiber Sensors for Ultrasonic Structural Health Monitoring: A Review. Sensors 2021, 21, 7345. [Google Scholar] [CrossRef]
- Mizuno, Y.; Theodosiou, A.; Kalli, K.; Liehr, S.; Lee, H.; Nakamura, K. Distributed Polymer Optical Fiber Sensors: A Review and Outlook. Photon. Res. 2021, 9, 1719–1733. [Google Scholar] [CrossRef]
- Liehr, S. Polymer Optical Fiber Sensors in Structural Health Monitoring. In New Developments in Sensing Technology for Structural Health Monitoring; Mukhopadhyay, S.C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 297–333. ISBN 978-3-642-21099-0. [Google Scholar]
- Taymaz, B.H.; Kamış, H.; Dziendzikowski, M.; Kowalczyk, K.; Dragan, K.; Eskizeybek, V. Enhancing Structural Health Monitoring of Fiber-Reinforced Polymer Composites Using Piezoresistive Ti3C2Tx MXene Fibers. Sci. Rep. 2025, 15, 2456. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.; Yadav, C.S.; Maurya, R.; Sharma, G.; Singh, T.S.; Kumar, S.; Singh, V. Experimental Detection of Chlorpyrifos by MoS2 Coated Planar Polymer Waveguide Sensor Utilizing Common Path Interferometric Principle. Optik 2023, 276, 170668. [Google Scholar] [CrossRef]
- Chen, H.; Quan, W.; Zou, P.; Fu, H.; Lin, Z.; Liu, X.; Xue, J.; Fan, W.; Zhang, D. Polymer Waveguide Sensor Based on Localized Surface Plasmon Resonance for NaCl Solution Detection. In Proceedings of the 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID), Xiamen, China, 25–27 October 2019; pp. 220–223. [Google Scholar]
- Liu, F.; Guidotti, D.; Sundaram, V.; Mahajan, S.; Huang, Z.; Chang, Y.-J.; Chang, G.K.; Tummala, R.R. Material and Process Challenges in Embedding Polymeric Waveguides and Detectors in System on Package (SOP). In Proceedings of the 9th International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces. 2004 Proceedings, Atlanta, GA, USA, 24–26 March 2004; pp. 89–94. [Google Scholar]
- Grandes, J.; Illarramendi, M.A.; Arrospide, E.; Bikandi, I.; Aramburu, I.; Guarrotxena, N.; García, O.; Zubia, J. Temperature Effects on the Emission of Polymer Optical Fibers Doped with Lumogen Dyes. Opt. Fiber Technol. 2022, 72, 102980. [Google Scholar] [CrossRef]
- Lindsay, G.A.; Guenthner, A.J.; Wright, M.E.; Sanghadasa, M.; Ashley, P.R. Multi-Month Thermal Aging of Electro-Optic Polymer Waveguides: Synthesis, Fabrication, and Relaxation Modeling. Polymer 2007, 48, 6605–6616. [Google Scholar] [CrossRef]
- Fukuda, Y.; Osawa, Z. Wavelength Effect on the Photo-Degradation of Polycarbonate and Poly(Methyl Methacrylate)—Confirmation of the Photo-Degradation Mechanism of PC/PMMA Blends. Polym. Degrad. Stab. 1991, 34, 75–84. [Google Scholar] [CrossRef]
- Robin, C.J.; Jonnalagadda, K.N. Effect of Size and Moisture on the Mechanical Behavior of SU-8 Thin Films. J. Micromech. Microeng. 2016, 26, 025020. [Google Scholar] [CrossRef]
- Song, H.; Rodriguez, N.A.; Oakdale, J.S.; Duoss, E.B.; Crawford, R.H.; Seepersad, C.C. Aging of UV Curable PDMS Developed for Large-Scale, High Viscosity Stereolithography. Polym. Degrad. Stab. 2023, 207, 110227. [Google Scholar] [CrossRef]
- Imamura, S. Polymeric Optical Waveguides [Materials, Packaging and Applications]. In Proceedings of the 1998 IEEE/LEOS Summer Topical Meeting. Digest. Broadband Optical Networks and Technologies: An Emerging Reality. Optical MEMS. Smart Pixels. Organic Optics and Optoelectronics (Cat. No.98TH8369), Monterey, CA, USA, 20–24 July 1998; pp. III/35–III/36. [Google Scholar]
- Asch, J.V.; Missinne, J.; He, J.; Podpod, A.; Lepage, G.; Golshani, N.; Magdziak, R.; Sar, H.; Kobbi, H.; Bipul, S.; et al. Low-Loss Integration of High-Density Polymer Waveguides with Silicon Photonics for Co-Packaged Optics. Optica 2025, 12, 821–830. [Google Scholar] [CrossRef]
- Datta-Chaudhuri, T.; Abshire, P.; Smela, E. Packaging Commercial CMOS Chips for Lab on a Chip Integration. Lab. Chip 2014, 14, 1753–1766. [Google Scholar] [CrossRef]
- Kim, M.; Huang, Y.; Choi, K.; Hidrovo, C.H. The Improved Resistance of PDMS to Pressure-Induced Deformation and Chemical Solvent Swelling for Microfluidic Devices. Microelectron. Eng. 2014, 124, 66–75. [Google Scholar] [CrossRef]
- Suda, S.; Noriki, A.; Kuwatsuka, H.; Nakamura, F.; Atsumi, Y.; Kurosu, T.; Murao, T.; Amano, T. High-Power Stability and Reliability of Polymer Optical Waveguide for Co-Packaged Optics. J. Light. Technol. 2025, 43, 4903–4912. [Google Scholar] [CrossRef]
- Perevoznik, D.; Tajalli, A.; Zuber, D.; Pätzold, W.; Demircan, A.; Morgner, U. Writing 3D Waveguides with Femtosecond Pulses in Polymers. J. Light. Technol. 2021, 39, 4390–4394. [Google Scholar] [CrossRef]
- Liu, J.; Ding, Z.; Zhang, Z. Ge-Polymer Bridge Waveguide for Mode-Locked Laser Pulse Generation. Opt. Lett. 2024, 49, 582–585. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Felipe, D.; Katopodis, V.; Groumas, P.; Kouloumentas, C.; Avramopoulos, H.; Dupuy, J.-Y.; Konczykowska, A.; Dede, A.; Beretta, A.; et al. Hybrid Photonic Integration on a Polymer Platform. Photonics 2015, 2, 1005–1026. [Google Scholar] [CrossRef]
- ShangGuan, L.; Zhang, D.; Zhang, T.; Cheng, R.; Wang, J.; Wang, C.; Wang, F.; Ho, S.-T.; Chen, C.; Fei, T. Functionalized Polymer Waveguide Optical Switching Devices Integrated with Visible Optical Amplifiers Based on an Organic Gain Material. Dye. Pigment. 2020, 176, 108210. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z. Polymer-Embedding Germanium Nanostrip Waveguide of High Polarization Extinction. Polymers 2023, 15, 4093. [Google Scholar] [CrossRef]
- Escher, A.; Megahd, H.; Tavella, C.; Comoretto, D.; Lova, P. Colorimetric Polymer Sensors for Smart Packaging. Macromol. Chem. Phys. 2023, 224, 2300022. [Google Scholar] [CrossRef]
- Rodrigues, C.; Souza, V.G.L.; Coelhoso, I.; Fernando, A.L. Bio-Based Sensors for Smart Food Packaging—Current Applications and Future Trends. Sensors 2021, 21, 2148. [Google Scholar] [CrossRef]
- Ibrahim, S.; Fahmy, H.; Elkhawas, K.; Labeeb, A. Smart Packaging Materials Based Nanoencapsulated Bromothymol as Monitoring Sensors for Spoilage of Chilled Fillet. J. Food Sci. Technol. 2025. [Google Scholar] [CrossRef]
- Hoffmann, G.-A.; Wienke, A.; Reitberger, T.; Franke, J.; Kaierle, S.; Overmeyer, L. Thermoforming of Planar Polymer Optical Waveguides for Integrated Optics in Smart Packaging Materials. J. Mater. Process. Technol. 2020, 285, 116763. [Google Scholar] [CrossRef]
- Lytel, R.; Lipscomb, G.F. Packaging and Applications of Active Polymer Optical Switching Arrays. In Optoelectronic Interconnects and Packaging: A Critical Review; SPIE: Bellingham, WA, USA, 1996; Volume 10284, pp. 407–417. [Google Scholar]
- Flöry, N.; Halter, M.; Strässle, V.; Betschon, F.; Alexoudi, T.; Charalampos, Z.; Lamprecht, T. Highly Reliable Polymer Waveguide Platform for Multi-Port Photonic Chip-Packaging. In Proceedings of the 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 1–4 June 2021; pp. 1689–1694. [Google Scholar]
- Evertz, A.; Pleuß, J.; Reitz, B.; Overmeyer, L. Flexo-Printed Polymer Waveguides for Integration in Electro-Optical Circuit Boards. Flex. Print. Electron. 2024, 9, 035001. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. A Review on Flexible Wearables—Recent Developments in Non-Invasive Continuous Health Monitoring. Sens. Actuators A Phys. 2024, 366, 114993. [Google Scholar] [CrossRef]
- Zha, B.; Wang, Z.; Ma, L.; Chen, J.; Wang, H.; Li, X.; Kumar, S.; Min, R. Intelligent Wearable Photonic Sensing System for Remote Healthcare Monitoring Using Stretchable Elastomer Optical Fiber. IEEE Internet Things J. 2024, 11, 17317–17329. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Yang, Y.; Xie, F.; Han, M.; Lin, Z.; Wang, Y.; Zhang, J.; Zhang, S.; Zhang, C.; et al. Photonic Skin for Photonic-Integration-Based Wearable Sensors. Optica 2025, 12, 190–202. [Google Scholar] [CrossRef]
- Song, R.; Cho, S.; Khan, S.; Park, I.; Gao, W. Lighting the Path to Precision Healthcare: Advances and Applications of Wearable Photonic Sensors. Adv. Mater. 2025, 2419161. [Google Scholar] [CrossRef]
- Guo, J.; Tuo, J.; Sun, J.; Li, Z.; Guo, X.; Chen, Y.; Cai, R.; Zhong, J.; Xu, L. Stretchable Multimodal Photonic Sensor for Wearable Multiparameter Health Monitoring. Adv. Mater. 2025, 37, 2412322. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L. Trends and Advances in Wearable Plasmonic Sensors Utilizing Surface-Enhanced Raman Spectroscopy (SERS): A Comprehensive Review. Sensors 2025, 25, 1367. [Google Scholar] [CrossRef]
- Ajeev, A.; Warfle, T.; Maslaczynska-Salome, S.; Alipoori, S.; Duprey, C.; Wujcik, E.K. From the Synthesis of Wearable Polymer Sensors to Their Potential for Reuse and Ultimate Fate. Chem. Sci. 2025, 16, 9056–9075. [Google Scholar] [CrossRef]
- Hamjah, M.-K.; Zeitler, J.; Eiche, Y.; Lorenz, L.; Backhaus, C.; Hoffmann, G.-A.; Wienke, A.; Kaierle, S.; Overmeyer, L.; Lindlein, N.; et al. Manufacturing of Polymer Optical Waveguides for 3D-Opto-MID: Review of the OPTAVER Process. In Proceedings of the 2021 14th International Congress Molded Interconnect Devices (MID), Amberg, Germany, 9–10 February 2021; pp. 1–11. [Google Scholar]
- Backhaus, C.; Hoffmann, G.A.; Reitberger, T.; Eiche, Y.; Overmeyer, L.; Franke, J.; Lindlein, N. Analysis of Additive Manufactured Polymer Optical Waveguides: Measurement and Simulation of Their Waviness. In Proceedings of the Integrated Optics: Devices, Materials, and Technologies XXIV, San Francisco, CA, USA, 3–6 February 2020; SPIE: Bellingham, WA, USA, 2020; Volume 11283, pp. 193–202. [Google Scholar]
- Ding, Z.; Wang, H.; Li, T.; Ouyang, X.; Shi, Y.; Zhang, A.P. Fabrication of Polymer Optical Waveguides by Digital Ultraviolet Lithography. J. Light. Technol. 2022, 40, 163–169. [Google Scholar] [CrossRef]
- Jradi, S.; Soppera, O.; Lougnot, D.J. Fabrication of Polymer Waveguides between Two Optical Fibers Using Spatially Controlled Light-Induced Polymerization. Appl. Opt. 2008, 47, 3987–3993. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Dong, K.; Li, F.; Jia, Q.; Tian, J.; Yu, M.; Xiong, Y. Additive Manufacturing of Polymer Composite Millimeter-Wave Components: Recent Progress, Novel Applications, and Challenges. Polym. Compos. 2025, 46, 14–37. [Google Scholar] [CrossRef]
- Prajzler, V.; Chlupaty, V.; Neruda, M. Circular Large Core Optical Elastomer Waveguides Fabricated by Using Direct Microdispense Fabrication Method. Optik 2022, 250, 168348. [Google Scholar] [CrossRef]
- Baghdasaryan, T.; Vanmol, K.; Berghmans, F.; Thienpont, H.; Van Erps, J. 3D Printing of Fiber and Waveguide Coupling Components in Polymer. In Proceedings of the 2023 International Workshop on Fiber Optics on Access Networks (FOAN), Ghent, Belgium, 30–31 October 2023; p. 20. [Google Scholar]
- Trunin, P.; Cafiso, D.; Beccai, L. Design and 3D Printing of Soft Optical Waveguides towards Monolithic Perceptive Systems. Addit. Manuf. 2025, 100, 104687. [Google Scholar] [CrossRef]
- Hamjah, M.-K.; Thielen, N.; Hagelloch, J.E.; Franke, J. Machine Learning Approach towards Quality Control of Aerosol-Jet Printed Polymer Optical Waveguides Material. In Proceedings of the 2021 IEEE Region 10 Symposium (TENSYMP), Jeju, Republic of Korea, 23–25 August 2021; pp. 1–5. [Google Scholar]
- Najeeb, J.; Shah, S.S.A.; Tahir, M.H.; Hanafy, A.I.; El-Bahy, S.M.; El-Bahy, Z.M. Machine Learning Assisted Designing of Polymers and Refractive Index Prediction: Easy and Fast Screening of Polymers from Chemical Space. Mater. Chem. Phys. 2024, 324, 129685. [Google Scholar] [CrossRef]
- Raju, B.; Kumar, R.; Dhanalakshmi, S.; Hrbac, R.; Demel, L.; R., N. Experimental Investigation on Polymer Coated Fibre Bragg Grating Sensor for Temperature Measurement in Sewer Environment. Results Eng. 2025, 25, 104319. [Google Scholar] [CrossRef]
- Abtahi, S.; Hendeniya, N.; Mahmud, S.T.; Mogbojuri, G.; Iheme, C.L.; Chang, B. Metal-Coordinated Polymer–Inorganic Hybrids: Synthesis, Properties, and Application. Polymers 2025, 17, 136. [Google Scholar] [CrossRef]
- Butt, M.A.; Piramidowicz, R. Integrated Photonic Sensors for the Detection of Toxic Gasses—A Review. Chemosensors 2024, 12, 143. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butt, M.A. Photonics on a Budget: Low-Cost Polymer Sensors for a Smarter World. Micromachines 2025, 16, 813. https://doi.org/10.3390/mi16070813
Butt MA. Photonics on a Budget: Low-Cost Polymer Sensors for a Smarter World. Micromachines. 2025; 16(7):813. https://doi.org/10.3390/mi16070813
Chicago/Turabian StyleButt, Muhammad A. 2025. "Photonics on a Budget: Low-Cost Polymer Sensors for a Smarter World" Micromachines 16, no. 7: 813. https://doi.org/10.3390/mi16070813
APA StyleButt, M. A. (2025). Photonics on a Budget: Low-Cost Polymer Sensors for a Smarter World. Micromachines, 16(7), 813. https://doi.org/10.3390/mi16070813