Evaluating the Accuracy of Low-Cost Wearable Sensors for Healthcare Monitoring
Abstract
1. Introduction
2. Materials and Methods
2.1. Wearable Measuring System
2.2. Commercial Measuring System
2.3. Acceptable Measurement Error Thresholds
2.4. Software
3. Results
4. Discussions
- and are the measurements obtained from the two methods for the same subject i;
- is the mean difference between methods;
- SD is the standard deviation of the differences;
- The factor 1.96 assumes that the differences follow a normal distribution, corresponding to a 95% confidence interval.
- Influence of Body Posture: Measurement consistency was significantly affected by participant position. The Standing posture led to the highest variability, particularly in the BPT-Earlobe setup, where the most extreme outliers (up to −7 bpm) were found. In contrast, the Sitting position provided the most stable environment for both configurations.
- Sensor Configuration Accuracy: While the BPT-Finger configuration exhibited wider agreement limits—especially in the Rest condition—BPT-Earlobe showed greater fluctuation in the Standing posture. Moreover, the earlobe setup often presented discretized readings, suggesting possible limitations in digital resolution or processing precision.
- Outliers and Noise: Significant outliers, such as −11 bpm for BPT-Finger at Rest and −7 bpm for BPT-Earlobe at Standing, highlight susceptibility to motion or perfusion-related artifacts. These findings underscore the need for improved artifact detection and correction algorithms.
- Signal Distribution Patterns: The recurring trimodal distribution observed in BPT-Earlobe measurements may indicate a systemic feature of the signal acquisition process, potentially related to quantization or internal filtering—warranting further technical investigation.
- Effect of Body Position: Body posture had a significant impact on the agreement of Sp measurements. Notably, the Standing position yielded the most consistent readings for the BPT-Finger configuration, while the Sitting position exhibited greater variability for both configurations. This finding contrasts with what is typically observed in heart rate measurements, where the resting position usually offers greater stability.
- Comparison Between Configurations: The BPT-Finger configuration generally showed limits of agreement similar to those of the BPT-Earlobe. However, it presented a greater occurrence of extreme outliers at lower Sp values (around 93%). The BPT-Earlobe configuration, in turn, exhibited more evident quantization patterns, particularly in the Rest position.
- Accuracy Across Different Sp Ranges: Both configurations demonstrated better agreement with the reference device at Sp levels ranging from 97% to 99%, which correspond to normal oxygen saturation in healthy adults. However, greater variability and the presence of outliers were observed in lower ranges (93–95%), which is critical in clinical applications where the detection of moderate hypoxemia is essential.
- Quantization Patterns: The distinct clustering patterns observed—particularly in the BPT-Earlobe configuration during the Rest position—suggest limitations in digital resolution or in the signal processing algorithm. This “stepping” effect in the measurements may impair the device’s ability to detect subtle changes in oxygen saturation.
Study Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANVISA | Brazilian Health Regulatory Agency |
BLE | Bluetooth Low Energy |
BMI | Body Mass Index |
BPT | Blood Pressure Trend |
BPT-Earlobe | Blood Pressure Trend measured at the Earlobe |
BPT-Finger | Blood Pressure Trend measured at the Finger |
CBP | Commercial Blood Pressure |
CIR | Commercial Infrared Thermometer |
COX | Commercial Oximeter |
G-TECH LA800 | Commercial Blood Pressure Monitor |
G-TECH THGTSC3 | Commercial Infrared Thermometer |
INMETRO | National Institute of Metrology, Quality, and Technology |
IoT | Internet of Things |
IR | Infrared |
IR MLX90614 | Infrared MLX90614 Thermometer Sensor |
MQTT | Message Queuing Telemetry Transport |
PPG | Photoplethysmography |
Sp | Oxygen Saturation |
UT-100 | Portable Pulse Oximeter (specific commercial device) |
References
- Salem, E.Y.; Zain, M.Y.; Alfons, M. Smart wearable health device for heart rate and temperature measurements. IGI Glob. 2020, 11, 17–28. [Google Scholar] [CrossRef]
- An, B.W.; Shin, J.H.; Kim, S.; Kim, J.; Ji, S.; Park, J.; Lee, Y.; Jang, J.; Park, Y.; Cho, E.; et al. Smart sensor systems for wearable electronic devices. Polymers 2017, 9, 303. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, M.; Liu, C.; Wang, D.; Li, K. Recent advances in sensor technology for healthcare and biomedical applications. Sensors 2023, 23, 5949. [Google Scholar] [CrossRef] [PubMed]
- Guppy, F.; Muniz-Pardos, B.; Angeloudis, K.; Grivas, G.V.; Pitsiladis, A.; Bundy, R.; Zelenkova, I.; Tanisawa, K.; Akiyama, H.; Keramitsoglou, I.; et al. Technology innovation and guardrails in elite sport: The future is now. Sport. Med. 2023, 53 (Suppl. 1), 97–113. [Google Scholar] [CrossRef] [PubMed]
- Arandia, N.; Garate, J.I.; Mabe, J. Embedded sensor systems in medical devices: Requisites and challenges ahead. Sensors 2022, 22, 9917. [Google Scholar] [CrossRef]
- Arandia, N.; Garate, J.I.; Mabe, J. Medical devices with embedded sensor systems: Design and development methodology for start-ups. Sensors 2023, 23, 2578. [Google Scholar] [CrossRef]
- Sudha, K.; Theresa, M.M.; Vinayagam, P.; Suganthi, R.; Sripriya, T.; Uthayakumar, G.S. Efficient IoT-based COVID patient healthcare control system using Arduino with mobile app. Meas. Sens. 2024, 33, 101161. [Google Scholar] [CrossRef]
- Abdulmalek, S.; Nasir, A.; Jabbar, W.A.; Almuhaya, M.A.M.; Bairagi, A.K.; Khan, M.A.-M.; Kee, S.-H. IoT-based healthcare monitoring system towards improving quality of life: A review. Healthcare 2022, 10, 1993. [Google Scholar] [CrossRef]
- Srikanth, B.; Divya, P.; Nandini, P.; Sabira, S.; Bharathi, T. Patient health monitoring using Arduino through IoT. EPRA Int. J. Res. Dev. 2020, 5, 619–633. [Google Scholar] [CrossRef]
- Sheikh, P.P.; Riyad, T.; Tushar, B.D.; Alam, S.S.; Ruddra, I.M.; Shufian, A. Analysis of patient health using Arduino and monitoring system. J. Eng. Res. Rep. 2024, 26, 25–33. [Google Scholar] [CrossRef]
- National Health Surveillance Agency—ANVISA. ANVISA Legislation. Updated on 9 August 2024. Available online: https://www.gov.br/anvisa/pt-br/assuntos/regulamentacao/legislacao (accessed on 23 May 2025).
- National Institute of Metrology, Standardization and Industrial Quality—INMETRO. Approval Ordinances for Measurement Instrument Models. Available online: https://www.gov.br/inmetro/pt-br/centrais-de-conteudo/sistemas/legislacao (accessed on 10 August 2024).
- Chuangchai, W.; Pothisiri, W. Postural changes on heart rate variability among older population: A preliminary study. J. Aging Res. 2021, 2021, 6611479. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Franco, V.H.P.; Lima, R.A.; Silva, A.M.; Oliveira, T.C.; Reis, D.F. Influence of body position on skin temperature, heart rate, and blood pressure in active men. J. Therm. Biol. 2025, 127, 104009. [Google Scholar] [CrossRef]
- Ceylan, B.; Akinci, A.; Ozden, A.T.; Yildiz, M. Evaluation of oxygen saturation values in different body positions in healthy individuals. J. Clin. Nurs. 2016, 25, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Tapar, H.; Karaman, T.; Dogruel, T.; Bulut, E.; Cinar, H.; Sahin, M.; Aydin, A. The effect of patient positions on perfusion index. BMC Anesthesiol. 2018, 18, 111. [Google Scholar] [CrossRef] [PubMed]
- Pickering, T.G.; Hall, J.E.; Appel, L.J.; Falkner, B.E.; Graves, J.; Hill, M.N.; Jones, D.W.; Kurtz, T.; Sheps, S.G.; Roccella, E.J. Recommendations for blood pressure measurement in humans and experimental animals. Hypertension 2005, 45, 142–161. [Google Scholar] [CrossRef]
- Balaji, A.N.; Ferlini, A.; Kawsar, F.; Montanari, A. Stereo-BP: Non-invasive blood pressure sensing with earables. In Proceedings of the 24th International Workshop on Mobile Computing Systems and Applications (HotMobile ’23), Newport Beach, CA, USA, 22–23 February 2023; pp. 96–102. [Google Scholar] [CrossRef]
- Hodgkinson, J.; Koshiaris, C.; Martin, U.; Mant, J.; Heneghan, C.; Hobbs, F.R.; McManus, R.J. Accuracy of monitors used for blood pressure checks in English retail pharmacies: A cross-sectional observational study. Br. J. Gen. Pract. 2016, 66, e309-14. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021, 398, 957–980. [Google Scholar] [CrossRef]
- Aung, K.; Htay, T. Relationship Between Outpatient Clinic and Ambulatory Blood Pressure Measurements and Mortality. Curr. Cardiol. Rep. 2019, 21, 28. [Google Scholar] [CrossRef]
- Stergiou, G.S.; Palatini, P.; Parati, G.; O’Brien, E.; Januszewicz, A.; Lurbe, E.; Persu, A.; Mancia, G.; Kreutz, R. 2021 European Society of Hypertension practice guidelines for office and out-of-office blood pressure measurement. J. Hypertens. 2021, 39, 1293–1302. [Google Scholar] [CrossRef]
- Chandel, T.; Miranda, V.; Lowe, A.; Lee, T.C. Blood Pressure Measurement Device Accuracy Evaluation: Statistical Considerations with an Implementation in R. Technologies 2024, 12, 44. [Google Scholar] [CrossRef]
- Kumar, R.; Dubey, P.K.; Zafer, A.; Kumar, A.; Yadav, S. Design, Development and Analysis of an Image Processing Based Advanced System for Testing, Calibration and Type Approval of Blood Pressure Devices. IEEE Instrum. Meas. Mag. 2024, 27, 68–73. [Google Scholar] [CrossRef]
- Mousavi, S.S.; Reyna, M.A.; Clifford, G.D.; Sameni, R. A Survey on Blood Pressure Measurement Technologies: Addressing Potential Sources of Bias. Sensors 2024, 24, 1730. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.W.; Allen, N.B. Accuracy of Consumer Wearable Heart Rate Measurement During an Ecologically Valid 24-Hour Period: Intraindividual Validation Study. JMIR mHealth uHealth 2019, 7, e10828. [Google Scholar] [CrossRef]
- Pasadyn, S.R.; Soudan, M.; Gillinov, M.; Houghtaling, P.; Phelan, D.; Gillinov, N.; Bittel, B.; Desai, M.Y. Accuracy of commercially available heart rate monitors in athletes: A prospective study. Cardiovasc. Diagn. Ther. 2019, 9, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Shcherbina, A.; Mattsson, C.M.; Waggott, D.; Salisbury, H.; Christle, J.W.; Hastie, T.; Wheeler, M.T.; Ashley, E.A. Accuracy in Wrist-Worn, Sensor-Based Measurements of Heart Rate and Energy Expenditure in a Diverse Cohort. J. Pers. Med. 2017, 7, 3. [Google Scholar] [CrossRef]
- Kim, C.; Song, J.H.; Kim, S.H. Validation of Wearable Digital Devices for Heart Rate Measurement During Exercise Test in Patients With Coronary Artery Disease. Ann. Rehabil. Med. 2023, 47, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Koerber, D.; Khan, S.; Shamsheri, T.; Kirubarajan, A.; Mehta, S. Accuracy of Heart Rate Measurement with Wrist-Worn Wearable Devices in Various Skin Tones: A Systematic Review. J. Racial Ethn. Health Disparities 2023, 10, 2676–2684. [Google Scholar] [CrossRef]
- Quinn, R.; Leader, N.; Lebovic, G.; Chow, C.-M.; Dorian, P. Accuracy of Wearable Heart Rate Monitors During Exercise in Sinus Rhythm and Atrial Fibrillation. J. Am. Coll. Cardiol. 2024, 83, 1177–1179. [Google Scholar] [CrossRef] [PubMed]
- Webb, R.K.; Ralston, A.C.; Runciman, W.B. Potential errors in pulse oximetry. II. Effects of changes in saturation and signal quality. Anaesthesia 1991, 46, 207–212. [Google Scholar] [CrossRef]
- Marinari, S.; Volpe, P.; Simoni, M.; Aventaggiato, M.; De Benedetto, F.; Nardini, S.; Sanguinetti, C.M.; Palange, P. Accuracy of a New Pulse Oximetry in Detection of Arterial Oxygen Saturation and Heart Rate Measurements: The SOMBRERO Study. Sensors 2022, 22, 5031. [Google Scholar] [CrossRef]
- Helmer, P.; Rodemers, P.; Hottenrott, S.; Leppich, R.; Helwich, M.; Pryss, R.; Kranke, P.; Meybohm, P.; Winkler, B.E.; Sammeth, M. Evaluating blood oxygen saturation measurements by popular fitness trackers in postoperative patients: A prospective clinical trial. iScience 2023, 26, 108155. [Google Scholar] [CrossRef] [PubMed]
- Louie, A.; Feiner, J.R.; Bickler, P.E.; Rhodes, L.; Bernstein, M.; Lucero, J. Four Types of Pulse Oximeters Accurately Detect Hypoxia during Low Perfusion and Motion. Anesthesiology 2018, 128, 520–530. [Google Scholar] [CrossRef]
- Schiefer, L.M.; Treff, G.; Treff, F.; Schmidt, P.; Schäfer, L.; Niebauer, J.; Swenson, K.E.; Swenson, E.R.; Berger, M.M.; Sareban, M. Validity of Peripheral Oxygen Saturation Measurements with the Garmin Fenix 5X Plus Wearable Device at 4559 m. Sensors 2021, 21, 6363. [Google Scholar] [CrossRef]
- Quaresima, V.; Ferrari, M.; Scholkmann, F. Ninety years of pulse oximetry: History, current status, and outlook. J. Biomed. Opt. 2024, 29, S33307. [Google Scholar] [CrossRef] [PubMed]
- Chacon, P.J.; Pu, L.; da Costa, T.H.; Shin, Y.-H.; Ghomian, T.; Shamkhalichenar, H.; Wu, H.-C.; Irving, B.A.; Choi, J.-W. A Wearable Pulse Oximeter With Wireless Communication and Motion Artifact Tailoring for Continuous Use. IEEE Trans. Biomed. Eng. 2019, 66, 1505–1513. [Google Scholar] [CrossRef] [PubMed]
- Kiekkas, P.; Aretha, D.; Tzenalis, A.; Stefanopoulos, N. Diagnostic accuracy of oral thermometry for fever detection in adult patients: Literature review and meta-analysis. J. Clin. Nurs. 2022, 31, 520–531. [Google Scholar] [CrossRef]
- Merriman, C.; Voller, H.; Machin, G.; Wiltshire, R.; Stevens, R.; Fleming, S. Understanding the accuracy of body temperature measurements in patient triage during cancer treatment: A retrospective audit. Cancer Nurs. Pract. 2024, 24, 26–33. [Google Scholar] [CrossRef]
- Verma, N.; Haji-Abolhassani, I.; Ganesh, S.; Vera-Aguilera, J.; Paludo, J.; Heitz, R.; Ghoreyshi, A. A novel wearable device for continuous temperature monitoring and fever detection. IEEE J. Transl. Eng. Health Med. 2021, 9, 2700407. [Google Scholar] [CrossRef]
- Pecoraro, V.; Petri, D.; Costantino, G.; Squizzato, A.; Moja, L.; Virgili, G.; Lucenteforte, E. The diagnostic accuracy of digital, infrared and mercury-in-glass thermometers in measuring body temperature: A systematic review and network meta-analysis. Intern. Emerg. Med. 2021, 16, 1071–1083. [Google Scholar] [CrossRef]
- Holder, T.; Hooper, F.S.W.; Yates, D.; Tse, Z.; Patil, S.; Moussa, A.; Jayagopal, V. Clinical accuracy of infrared temperature measurement devices: A comparison against non-invasive core-body temperature. Clin. Med. 2023, 23, 157–163. [Google Scholar] [CrossRef]
- Spindel, J.F.; Pokrywa, S.; Elder, N.; Smith, C. The environment has effects on infrared temperature screening for COVID-19 infection. Am. J. Infect. Control 2021, 49, 1445–1447. [Google Scholar] [CrossRef] [PubMed]
- Lucena, G.D.S.J.; Santana, V.L.A.; de Corrêa, J.B.C.; Neto, J.J.C.; Macêdo, N.D.A.R.; da Silva, S.F.; Nunes, L.F.; Oliveira, A.P.C.; Rodrigues, J.P.M. A relação do estresse psicológico no desenvolvimento da hipertensão arterial sistêmica em pacientes de meia idade. Rev. Eletrônica Acervo Saúde 2024, 24, e16807. [Google Scholar] [CrossRef]
- de Souza, R.P.; Janke, B.; Cardoso, G.C. Decomposição de pulsos fotopletismográfico para redução da incerteza do Tempo de Trânsito. Rev. Bras. Física Médica 2020, 14, 546. [Google Scholar] [CrossRef]
Subject ID | Age | Height (cm) | BMI 1 (kg/m2) | Gender |
---|---|---|---|---|
1 | 40 | 171 | 39.30 | Female |
2 | 68 | 184 | 26.60 | Male |
3 | 74 | 156 | 27.20 | Female |
4 | 75 | 170 | 17.30 | Female |
5 | 60 | 185 | 25.27 | Male |
6 | 79 | 165 | 25.71 | Female |
7 | 87 | 155 | 17.78 | Female |
8 | 37 | 175 | 22.86 | Female |
9 | 48 | 166 | 29.03 | Female |
10 | 42 | 170 | 25.26 | Male |
Position | Subject ID | UT-100 (bpm) | BPT-Finger (bpm) | BPT-Earlobe (bpm) | Error Rate BPT-Finger (%) | Error Rate BPT-Earlobe (%) |
---|---|---|---|---|---|---|
Sitting | 1 | 0–1.57 | 0–1.02 | |||
2 | 0–0.66 | 0–0.61 | ||||
3 | 0–0.99 | 0–1.10 | ||||
4 | 0–0.00 | 0–1.43 | ||||
5 | 0–1.49 | 0–1.38 | ||||
6 | 0–1.37 | 0–1.30 | ||||
7 | 0–0.74 | 0–0.79 | ||||
8 | 0–3.45 | 0–2.30 | ||||
9 | 0–1.35 | 0–0.76 | ||||
10 | 0–3.31 | 0–0.71 | ||||
Rest | 1 | 0–1.56 | 0–1.55 | |||
2 | 0–1.57 | 0–1.23 | ||||
3 | 0–0.54 | 0–1.09 | ||||
4 | 0–0.83 | 0–0.83 | ||||
5 | 0–0.65 | 0–0.81 | ||||
6 | 0–0.75 | 0–0.75 | ||||
7 | 0–1.24 | 0–1.24 | ||||
8 | 0–1.95 | 0–2.60 | ||||
9 | 0–1.22 | 0–1.45 | ||||
10 | 0–1.35 | 0–1.40 | ||||
Standing | 1 | 0–4.82 | 0.39–4.82 | |||
2 | 0–1.68 | 0–1.13 | ||||
3 | 0.45–1.02 | 0.43–1.97 | ||||
4 | 0–0.62 | 0–1.21 | ||||
5 | 0–1.43 | 0–1.14 | ||||
6 | 0–0.68 | 0–1.27 | ||||
7 | 0–1.27 | 0–1.38 | ||||
8 | 0–2.09 | 0–1.10 | ||||
9 | 0–5.26 | 0–5.26 | ||||
10 | 0–1.28 | 0–1.14 |
Position | Subject ID | UT-100 (%) | BPT-Finger (%) | BPT-Earlobe (%) | Error Rate BPT-Finger (%) | Error Rate BPT-Earlobe (%) |
---|---|---|---|---|---|---|
Sitting | 1 | 0–4.17 | 0–4.17 | |||
2 | 0–3.45 | 0–2.17 | ||||
3 | 0–1.22 | 0–1.06 | ||||
4 | 0–0.10 | 0–0.10 | ||||
5 | 0–1.34 | 0–3.09 | ||||
6 | 0–0.32 | 0–0.32 | ||||
7 | 0–1.03 | 0–1.03 | ||||
8 | 0–3.09 | 0–3.09 | ||||
9 | 0–4.17 | 0–4.17 | ||||
10 | 0–4.17 | 0–4.17 | ||||
Rest | 1 | 0–3.10 | 0–3.10 | |||
2 | 0–1.05 | 0–3.15 | ||||
3 | 0–1.03 | 0–3.15 | ||||
4 | 0–0.21 | 0–0.10 | ||||
5 | 0–0.61 | 0–0.94 | ||||
6 | 0–0.52 | 0–0.58 | ||||
7 | 0–0.52 | 0–0.52 | ||||
8 | 0–2.04 | 0–2.04 | ||||
9 | 0–0.41 | 0–0.41 | ||||
10 | 0–0.41 | 0–0.41 | ||||
Standing | 1 | 0–1.02 | 0–2.08 | |||
2 | 0–1.07 | 0–5.38 | ||||
3 | 0–0.30 | 0–0.40 | ||||
4 | 0–0.41 | 0–0.41 | ||||
5 | 0–0.62 | 0–0.62 | ||||
6 | 0–0.31 | 0–0.32 | ||||
7 | 0–0.62 | 0–0.62 | ||||
8 | 0–0.21 | 0–0.21 | ||||
9 | 0–0.41 | 0–0.41 | ||||
10 | 0–2.92 | 0–2.92 |
Subject ID | G-TECH THGTSC3 (°C) | IR MLX90614 (°C) | Maximum Error Rate (°C) |
---|---|---|---|
1 | |||
2 | |||
3 | |||
4 | |||
5 | |||
6 | |||
7 | |||
8 | |||
9 | |||
10 |
Subject ID | Type | GTECH LA800 (mmHg) | BPT-Finger (mmHg) | BPT-Earlobe (mmHg) | Maximum Error Rate (mmHg) | |
---|---|---|---|---|---|---|
Finger | Earlobe | |||||
1 | Systolic | 2.40 | 3.40 | |||
Diastolic | 2.72 | 2.52 | ||||
2 | Systolic | 3.39 | 4.10 | |||
Diastolic | 3.91 | 4.24 | ||||
3 | Systolic | 1.46 | 3.38 | |||
Diastolic | 1.94 | 3.26 | ||||
4 | Systolic | 1.28 | 1.27 | |||
Diastolic | 1.57 | 2.89 | ||||
5 | Systolic | 3.33 | 2.62 | |||
Diastolic | 2.79 | 2.57 | ||||
6 | Systolic | 4.68 | 4.48 | |||
Diastolic | 4.97 | 3.28 | ||||
7 | Systolic | 25.34 | 25.34 | |||
Diastolic | 0.99 | 1.00 | ||||
8 | Systolic | 8.06 | 8.08 | |||
Diastolic | 4.27 | 3.36 | ||||
9 | Systolic | 4.21 | 3.81 | |||
Diastolic | 3.79 | 3.33 | ||||
10 | Systolic | 9.08 | 9.08 | |||
Diastolic | 1.66 | 1.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filgueiras, T.P.; Bertemes-Filho, P.; Noveletto, F. Evaluating the Accuracy of Low-Cost Wearable Sensors for Healthcare Monitoring. Micromachines 2025, 16, 791. https://doi.org/10.3390/mi16070791
Filgueiras TP, Bertemes-Filho P, Noveletto F. Evaluating the Accuracy of Low-Cost Wearable Sensors for Healthcare Monitoring. Micromachines. 2025; 16(7):791. https://doi.org/10.3390/mi16070791
Chicago/Turabian StyleFilgueiras, Tatiana Pereira, Pedro Bertemes-Filho, and Fabrício Noveletto. 2025. "Evaluating the Accuracy of Low-Cost Wearable Sensors for Healthcare Monitoring" Micromachines 16, no. 7: 791. https://doi.org/10.3390/mi16070791
APA StyleFilgueiras, T. P., Bertemes-Filho, P., & Noveletto, F. (2025). Evaluating the Accuracy of Low-Cost Wearable Sensors for Healthcare Monitoring. Micromachines, 16(7), 791. https://doi.org/10.3390/mi16070791