The Growth Mechanism of Boron-Doped Diamond in Relation to the Carbon-to-Hydrogen Ratio Using the Hot-Filament Chemical Vapor Deposition Method
Abstract
1. Introduction
2. Experimental
2.1. BDD Thin Film Deposition
2.2. BDD Thin Film Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kalish, R. Doping of Diamond. Carbon 1999, 37, 781–785. [Google Scholar] [CrossRef]
- Souza, F.L.; Saéz, C.; Lanza, M.R.V.; Cañizares, P.; Rodrigo, M.A. The Effect of the Sp3/Sp2 Carbon Ratio on the Electrochemical Oxidation of 2,4-D with p-Si BDD Anodes. Electrochim. Acta 2016, 187, 119–124. [Google Scholar] [CrossRef]
- Enache, T.A.; Chiorcea-Paquim, A.M.; Fatibello-Filho, O.; Oliveira-Brett, A.M. Hydroxyl Radicals Electrochemically Generated in Situ on a Boron-Doped Diamond Electrode. Electrochem. Commun. 2009, 11, 1342–1345. [Google Scholar] [CrossRef]
- Gracio, J.J.; Fan, Q.H.; Madaleno, J.C. Diamond Growth by Chemical Vapour Deposition. J. Phys. D Appl. Phys. 2010, 43, 374017. [Google Scholar] [CrossRef]
- Ramamurti, R.; Becker, M.; Schuelke, T.; Grotjohn, T.; Reinhard, D.; Swain, G.; Asmussen, J. Boron Doped Diamond Deposited by Microwave Plasma-Assisted CVD at Low and High Pressures. Diam. Relat. Mater. 2008, 17, 481–485. [Google Scholar] [CrossRef]
- Macpherson, J.V. A Practical Guide to Using Boron Doped Diamond in Electrochemical Research. Phys. Chem. Chem. Phys. 2015, 17, 2935–2949. [Google Scholar] [CrossRef]
- May, P.W. Diamond Thin Films: A 21st-Century Material. Philos. Trans. R. A Math. Phys. Eng. Sci. 2000, 358, 473–495. [Google Scholar] [CrossRef]
- Yu, S.; Liu, S.; Jiang, X.; Yang, N. Recent Advances on Electrochemistry of Diamond Related Materials. Carbon 2022, 200, 517–542. [Google Scholar] [CrossRef]
- Alfaro, M.A.Q.; Ferro, S.; Martínez-Huitle, C.A.; Vong, Y.M. Boron Doped Diamond Electrode for the Wastewater Treatment. J. Braz. Chem. Soc. 2006, 17, 227–236. [Google Scholar] [CrossRef]
- Perret, A.; Haenni, W.; Skinner, N.; Tang, X.-M.; Gandini, D.; Comninellis, C.; Correa, B.; Foti, G. Electrochemical Behavior of Synthetic Diamond Thin Film Electrodes. Diam. Relat. Mater. 1999, 8, 820–823. [Google Scholar] [CrossRef]
- Kamata, T.; Kato, D.; Ida, H.; Niwa, O. Structure and Electrochemical Characterization of Carbon Films Formed by Unbalanced Magnetron (UBM) Sputtering Method. Diam. Relat. Mater. 2014, 49, 25–32. [Google Scholar] [CrossRef]
- Kraft, A. Doped Diamond: A Compact Review on a New, Versatile Electrode Material. Int. J. Electrochem. Sci. 2007, 2, 355–385. [Google Scholar] [CrossRef]
- Bogdanowicz, R.; Ryl, J. Structural and Electrochemical Heterogeneities of Boron-Doped Diamond Surfaces. Curr. Opin. Electrochem. 2022, 31, 100876. [Google Scholar] [CrossRef]
- Nagasaka, H.; Teranishi, Y.; Kondo, Y.; Miyamoto, T.; Shimizu, T. Growth Rate and Electrochemical Properties of Boron-Doped Diamond Films Prepared by Hot-Filament Chemical Vapor Deposition Methods. e-J. Surf. Sci. Nanotechnol. 2016, 14, 53–58. [Google Scholar] [CrossRef]
- Liu, H.; Dandy, D.S. Studies on Nucleation Process in Diamond CVD: An Overview of Recent Developments. Diam. Relat. Mater. 1995, 4, 1173–1188. [Google Scholar] [CrossRef]
- Birrell, J.; Gerbi, J.E.; Auciello, O.; Gibson, J.M.; Gruen, D.M.; Carlisle, J.A. Bonding Structure in Nitrogen Doped Ultrananocrystalline Diamond. J. Appl. Phys. 2003, 93, 5606–5612. [Google Scholar] [CrossRef]
- Hutton, L.A.; Iacobini, J.G.; Bitziou, E.; Channon, R.B.; Newton, M.E.; Macpherson, J.V. Examination of the Factors Affecting the Electrochemical Performance of Oxygen-Terminated Polycrystalline Boron-Doped Diamond Electrodes. Anal. Chem. 2013, 85, 7230–7240. [Google Scholar] [CrossRef]
- Panizza, M.; Cerisola, G. Application of Diamond Electrodes to Electrochemical Processes. Electrochim. Acta 2005, 51, 191–199. [Google Scholar] [CrossRef]
- Guo, Z.; Guo, B.; Zhang, J.; Wu, G.; Zhao, H.; Jia, J.; Meng, Q.; Zhao, Q. CVD Diamond Processing Tools: A Review. J. Adv. Res. 2024; in press. [Google Scholar] [CrossRef]
- Linnik, S.A.; Gaydaychuk, A.V.; Mitulinsky, A.S.; Zenkin, S.P. Radio Frequency Bias Enhanced Nucleation of CVD Diamond. Mater. Lett. 2022, 324, 132670. [Google Scholar] [CrossRef]
- Suzuki, K.; Sawabe, A.; Yasuda, H.; Inuzuka, T. Growth of Diamond Thin Films by Dc Plasma Chemical Vapor Deposition. Appl. Phys. Lett. 1987, 50, 728–729. [Google Scholar] [CrossRef]
- Lee, S.-T.; Lin, Z.; Jiang, X. CVD Diamond Films: Nucleation and Growth. Mater. Sci. Eng. R Rep. 1999, 25, 123–154. [Google Scholar] [CrossRef]
- Zhang, C.; Vispute, R.D.; Fu, K.; Ni, C. A Review of Thermal Properties of CVD Diamond Films. J. Mater. Sci. 2023, 58, 3485–3507. [Google Scholar] [CrossRef]
- May, P.W.; Mankelevich, Y.A. From Ultrananocrystalline Diamond to Single Crystal Diamond Growth in Hot Filament and Microwave Plasma-Enhanced CVD Reactors: A Unified Model for Growth Rates and Grain Sizes. J. Phys. Chem. C 2008, 112, 12432–12441. [Google Scholar] [CrossRef]
- Birrell, J.; Gerbi, J.E.; Auciello, O.A.; Carlisle, J.A. Investigating the Role of Hydrogen in Ultra-Nanocrystalline Diamond Thin Film Growth. J. Phys. Condens. Matter 2006, 18, S1771. [Google Scholar] [CrossRef]
- Rouzbahani, R.; Nicley, S.S.; Vanpoucke, D.E.P.; Lloret, F.; Pobedinskas, P.; Araujo, D.; Haenen, K. Impact of Methane Concentration on Surface Morphology and Boron Incorporation of Heavily Boron-Doped Single Crystal Diamond Layers. Carbon 2021, 172, 463–473. [Google Scholar] [CrossRef]
- Duo, I.; Fujishima, A.; Comninellis, C. Electron Transfer Kinetics on Composite Diamond (Sp3)-Graphite (Sp2) Electrodes. Electrochem. Commun. 2003, 5, 695–700. [Google Scholar] [CrossRef]
- Cobb, S.J.; Ayres, Z.J.; Macpherson, J.V. Boron Doped Diamond: A Designer Electrode Material for the Twenty-First Century. Annu. Rev. Anal. Chem. 2018, 11, 463–484. [Google Scholar] [CrossRef]
- Duo, I.; Levy-Clement, C.; Fujishima, A.; Comninellis, C. Electron Transfer Kinetics on Boron-Doped Diamond Part I: Influence of Anodic Treatment. J. Appl. Electrochem. 2004, 34, 935–943. [Google Scholar] [CrossRef]
- Fairley, N.; Fernandez, V.; Richard-Plouet, M.; Guillot-Deudon, C.; Walton, J.; Smith, E.; Flahaut, D.; Greiner, M.; Biesinger, M.; Tougaard, S.; et al. Systematic and Collaborative Approach to Problem Solving Using X-Ray Photoelectron Spectroscopy. Appl. Surf. Sci. Adv. 2021, 5, 100112. [Google Scholar] [CrossRef]
- Tang, C.J.; Neves, A.J.; Fernandes, A.J.S. Influence of Nucleation Density on Film Quality, Growth Rate and Morphology of Thick CVD Diamond Films. Diam. Relat. Mater. 2003, 12, 1488–1494. [Google Scholar] [CrossRef]
- Disha, S.A.; Sahadat Hossain, M.; Habib, M.L.; Ahmed, S. Calculation of Crystallite Sizes of Pure and Metals Doped Hydroxyapatite Engaging Scherrer Method, Halder-Wagner Method, Williamson-Hall Model, and Size-Strain Plot. Results Mater. 2024, 21, 100496. [Google Scholar] [CrossRef]
- Kandemir, T.; Kasatkin, I.; Girgsdies, F.; Zander, S.; Kühl, S.; Tovar, M.; Schlögl, R.; Behrens, M. Microstructural and Defect Analysis of Metal Nanoparticles in Functional Catalysts by Diffraction and Electron Microscopy: The Cu/ZnO Catalyst for Methanol Synthesis. Top. Catal. 2014, 57, 188–206. [Google Scholar] [CrossRef]
- Chu, P.K.; Li, L. Characterization of Amorphous and Nanocrystalline Carbon Films. Mater. Chem. Phys. 2006, 96, 253–277. [Google Scholar] [CrossRef]
- Pang, H.; Wang, X.; Zhang, G.; Chen, H.; Lv, G.; Yang, S. Characterization of Diamond-like Carbon Films by SEM, XRD and Raman Spectroscopy. Appl. Surf. Sci. 2010, 256, 6403–6407. [Google Scholar] [CrossRef]
- Migliorini, F.L.; Braga, N.A.; Alves, S.A.; Lanza, M.R.V.; Baldan, M.R.; Ferreira, N.G. Anodic Oxidation of Wastewater Containing the Reactive Orange 16 Dye Using Heavily Boron-Doped Diamond Electrodes. J. Hazard. Mater. 2011, 192, 1683–1689. [Google Scholar] [CrossRef]
- Pruvost, F.; Bustarret, E.; Deneuville, A. Characteristics of Homoepitaxial Heavily Boron-Doped Diamond Films from Their Raman Spectra. Diam. Relat. Mater. 2000, 9, 295–299. [Google Scholar] [CrossRef]
- Ushizawa, K.; Watanabe, K.; Ando, T.; Sakaguchi, I.; Nishitani-Gamo, M.; Sato, Y.; Kanda, H. Boron Concentration Dependence of Raman Spectra on {100} and {111} Facets of B-Doped CVD Diamond. Diam. Relat. Mater. 1998, 7, 1719–1722. [Google Scholar] [CrossRef]
- Mortet, V.; Taylor, A.; Vlčková Živcová, Z.; Machon, D.; Frank, O.; Hubík, P.; Tremouilles, D.; Kavan, L. Analysis of Heavily Boron-Doped Diamond Raman Spectrum. Diam. Relat. Mater. 2018, 88, 163–166. [Google Scholar] [CrossRef]
- Baron, C.; Ghodbane, S.; Deneuville, A.; Bustarret, E.; Ortega, L.; Jomard, F. Detection of CHx Bonds and Sp2 Phases in Polycrystalline and Ta-C:H Films from Raman Spectra Excited at 325 Nm. Diam. Relat. Mater. 2005, 14, 949–953. [Google Scholar] [CrossRef]
- Prawer, S.; Nugent, K.W.; Jamieson, D.N. The Raman Spectrum of Amorphous Diamond. Diam. Relat. Mater. 1998, 7, 106–110. [Google Scholar] [CrossRef]
- Kao, W.H.; Su, Y.L.; Shih, M.Y. Effects of Varying Power and Argon Gas Flux on Tribological Properties and High-Speed Drilling Performance of Diamond-Like Carbon Coatings Deposited Using High-Power Impulse Magnetron Sputtering System. J. Mater. Eng. Perform. 2020, 29, 7291–7307. [Google Scholar] [CrossRef]
- Hrbek, J. Carbonaceous Overlayers on Ru (001). J. Vac. Sci. Technol. A Vac. Surf. Film 1986, 4, 86–89. [Google Scholar] [CrossRef]
- Burke, A.R.; Brown, C.R.; Bowling, W.C.; Glaub, J.E.; Kapsch, D.; Love, C.M.; Whitaker, R.B.; Moddeman, W.E. Ignition Mechanism of the Titanium–Boron Pyrotechnic Mixture. Surf. Interface Anal. 1988, 11, 353–358. [Google Scholar] [CrossRef]
- Chen, L.; Goto, T.; Hirai, T. State of Boron in Chemical Vapour-Deposited SiC-B Composite Powders. J. Mater. Sci. Lett. 1990, 9, 997–999. [Google Scholar] [CrossRef]
- Brainard, W.A.; Wheeler, D.R. An XPS Study of the Adherence of Refractory Carbide Silicide and Boride Rf-Sputtered Wear-Resistant Coatings. J. Vac. Sci. Technol. 1978, 15, 1800–1805. [Google Scholar] [CrossRef]
- Hendrickson, D.N.; Hollander, J.M.; Jolly, W.L. Core-Electron Binding Energies for Compounds of Boron, Carbon, and Chromium. Inorg. Chem. 1970, 9, 612–615. [Google Scholar] [CrossRef]
- Li, S.S.; Thurber, W.R. The Dopant Density and Temperature Dependence of Electron Mobility and Resistivity in N-Type Silicon. Solid-State Electron. 1977, 20, 609–616. [Google Scholar] [CrossRef]
- Vladimirov, I.; Kühn, M.; Geßner, T.; May, F.; Weitz, R.T. Energy Barriers at Grain Boundaries Dominate Charge Carrier Transport in an Electron-Conductive Organic Semiconductor. Sci. Rep. 2018, 8, 14868. [Google Scholar] [CrossRef]
- Guinea, E.; Centellas, F.; Brillas, E.; Cañizares, P.; Sáez, C.; Rodrigo, M.A. Electrocatalytic Properties of Diamond in the Oxidation of a Persistant Pollutant. Appl. Catal. B 2009, 89, 645–650. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Vieira Dos Santos, E.; Martínez-Huitle, C.A. Role of Sp3/Sp2 Ratio on the Electrocatalytic Properties of Boron-Doped Diamond Electrodes: A Mini Review. Electrochem. Commun. 2015, 59, 52–55. [Google Scholar] [CrossRef]
- Najafinejad, M.S.; Chianese, S.; Fenti, A.; Iovino, P.; Musmarra, D. Application of Electrochemical Oxidation for Water and Wastewater Treatment: An Overview. Molecules 2023, 28, 4208. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Xiong, Y. Electrochemical Oxidation Technology: A Review of Its Application in High-Efficiency Treatment of Wastewater Containing Persistent Organic Pollutants. J. Water Process Eng. 2021, 44, 102308. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Filament | Tantalum |
Substrate | Niobium, Silicon, Alumina |
Carbon source | Methane (CH4) |
Boron source | Trimethyl Boron (B(CH3)3) |
Process pressure | 30 Torr |
Working distance | 9 mm |
Filament temp. | 2400 °C |
Substrate temp. | 950 °C |
H2 flow rate | 450 sccm |
CH4 flow rate | 3, 5, 7, 9 sccm |
TMB flow rate | 3.5, 5.5, 8, 10 sccm |
C/H ratio | 0.3, 0.5, 0.7, 0.9% |
B/C ratio | 1100 ppm |
Deposition time | 10 h |
C/H Ratio | 0.3% | 0.5% | 0.7% | 0.9% |
---|---|---|---|---|
FWHM | 0.36 | 0.37 | 0.37 | 0.42 |
Intensity | 382.00 | 725.67 | 1161.00 | 1161.67 |
Grain size (nm) | 24.89 | 24.33 | 24.01 | 21.20 |
C/H Ratio | 0.3% | 0.5% | 0.7% | 0.9% |
---|---|---|---|---|
C-C sp3 (%) | 73.76 | 74.51 | 75.40 | 60.57 |
C-C sp2 (%) | 26.00 | 25.08 | 23.71 | 38.38 |
B-B (%) | 0.06 | 0.02 | 0.02 | 0.09 |
B-C (%) | 0.10 | 0.29 | 0.50 | 0.27 |
B-H (%) | 0.01 | 0.02 | 0.16 | 0.45 |
B-O (%) | 0.07 | 0.09 | 0.21 | 0.24 |
C/H Ratio | 0.3% | 0.5% | 0.7% | 0.9% |
---|---|---|---|---|
Resistivity (10−1 Ωcm) | 2.58 | 0.87 | 0.14 | 0.68 |
Carrier Concentration (1020/cm3) | 0.05 | 4.94 | 7.19 | 4.40 |
Hall mobility (cm2/Vs) | 4.68 | 0.15 | 0.63 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, T.; You, M.; Kim, S.; Song, P. The Growth Mechanism of Boron-Doped Diamond in Relation to the Carbon-to-Hydrogen Ratio Using the Hot-Filament Chemical Vapor Deposition Method. Micromachines 2025, 16, 742. https://doi.org/10.3390/mi16070742
Lee T, You M, Kim S, Song P. The Growth Mechanism of Boron-Doped Diamond in Relation to the Carbon-to-Hydrogen Ratio Using the Hot-Filament Chemical Vapor Deposition Method. Micromachines. 2025; 16(7):742. https://doi.org/10.3390/mi16070742
Chicago/Turabian StyleLee, Taekyeong, Miyoung You, Seohan Kim, and Pungkeun Song. 2025. "The Growth Mechanism of Boron-Doped Diamond in Relation to the Carbon-to-Hydrogen Ratio Using the Hot-Filament Chemical Vapor Deposition Method" Micromachines 16, no. 7: 742. https://doi.org/10.3390/mi16070742
APA StyleLee, T., You, M., Kim, S., & Song, P. (2025). The Growth Mechanism of Boron-Doped Diamond in Relation to the Carbon-to-Hydrogen Ratio Using the Hot-Filament Chemical Vapor Deposition Method. Micromachines, 16(7), 742. https://doi.org/10.3390/mi16070742