The Principle and Application of Achromatic Metalens
Abstract
:1. Introduction
2. The Principle of Metalens
3. Achromatic Metalens
4. Application of Metalens
5. Fabrication Methods
6. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Y.; Fan, Q.; Xu, T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron. Adv. 2021, 4, 200008. [Google Scholar] [CrossRef]
- Sun, P.; Zhao, Q.; Li, Y.; Liu, S.; Su, C.; Jiang, J.; Yun, M.; Zhao, Y.; Wang, J. Dual high-Q resonance sensing for refractive index and temperature based on all-dielectric asymmetric metasurface. Opt. Commun. 2024, 554, 130134. [Google Scholar] [CrossRef]
- Chen, J.; Guan, Z.; Tang, F.; Wu, J.; Ye, X.; Yang, L. Metalens design with broadband achromatic and Longitudinal High-Tolerance Imaging. Opt. Commun. 2025, 577, 131389. [Google Scholar] [CrossRef]
- Sun, C.; Pi, H.; Kiang, K.S.; Yan, J.; Ou, J.-Y. Near-Infrared Metalens Empowered Dual-Mode High Resolution and Large FOV Microscope. Adv. Opt. Mater. 2024, 12, 2400512. [Google Scholar] [CrossRef]
- Shah, Y.D.; Dada, A.C.; Grant, J.P.; Cumming, D.R.S.; Altuzarra, C.; Nowack, T.S.; Lyons, A.; Clerici, M.; Faccio, D. An all-dielectric metasurface polarimeter. ACS Photonics 2022, 9, 3245–3252. [Google Scholar] [CrossRef]
- Xie, N.; Carson, M.D.; Fröch, J.E.; Majumdar, A.; Seibel, E.J.; Böhringer, K.F. Large field-of-view short-wave infrared metalens for scanning fiber endoscopy. J. Biomed. Opt. 2023, 28, 094802. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Wang, D.; Shi, X.; Fan, Z. Transmissive mid-infrared achromatic bifocal metalens with polarization sensitivity. Opt. Express 2021, 29, 17173–17182. [Google Scholar] [CrossRef]
- Li, M.; Liu, M.; Chen, Y.; Hu, Z.-D.; Wu, J.; Wang, J. All-Dielectric Metasurface Lenses for Achromatic Imaging Applications. Nanoscale Res. Lett. 2022, 17, 81. [Google Scholar] [CrossRef] [PubMed]
- Khorasaninejad, M.; Shi, Z.; Zhu, A.Y.; Chen, W.T.; Sanjeev, V.; Zaidi, A.; Capasso, F. Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion. Nano Lett. 2017, 17, 1819–1824. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhu, A.Y.; Sisler, J.; Bharwani, Z.; Capasso, F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun. 2019, 10, 355. [Google Scholar] [CrossRef]
- Guo, Q.; Shi, Z.; Huang, Y.; Alexander, E.; Qiu, C.; Capasso, F.; Zickler, T. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders. Proc. Natl. Acad. Sci. USA. 2019, 116, 22959–22965. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Yao, J.; Wang, Z.; Zhou, J.; Tsai, D.P. Resonant Meta-Lens in the Visible. Laser Photonics Rev. 2025, 19, 2401740. [Google Scholar] [CrossRef]
- Fan, Z.B.; Qiu, H.Y.; Zhang HLet, a.l. A broadband achromatic metalens array for integral imaging in the visible. Light Sci. Appl. 2019, 8, 67. [Google Scholar] [CrossRef]
- Fan, Z.-B.; Shao, Z.-K.; Xie, M.-Y.; Pang, X.-N.; Ruan, W.-S.; Zhao, F.-L.; Chen, Y.-J.; Yu, S.-Y.; Dong, J.-W. Silicon Nitride Metalenses for Close-to-One Numerical Aperture and Wide-Angle Visible Imaging. Phys. Rev. Appl. 2018, 10, 014005. [Google Scholar] [CrossRef]
- Fröch, J.E.; Chakravarthula, P.; Sun, J.; Tseng, E.; Colburn, S.; Zhan, A.; Miller, F.; Wirth-Singh, A.; Tanguy, Q.A.A.; Han, Z.; et al. Beating spectral bandwidth limits for large aperture broadband nano-optics. Nat. Commun. 2025, 16, 3025. [Google Scholar] [CrossRef]
- Qiu, Y.; Deng, L.; Zhan, Y.; Li, G.; Guan, J. The Effect of Height Error on Performance of Propagation Phase-Based Metalens. Micromachines 2024, 15, 540. [Google Scholar] [CrossRef]
- Einck, V.J.; Torfeh, M.; McClung, A.; Jung, D.E.; Mansouree, M.; Arbabi, A.; Watkins, J.J. Scalable nanoimprint lithography process for manufacturing visible metasurfaces composed of high aspect ratio TiO2 meta-atoms. ACS Photonics 2021, 8, 24002409. [Google Scholar] [CrossRef]
- Quan, D.; Liu, X.; Tang, Y.; Liu, H.; Min, S.; Li, G.; Srivastava, A.K.; Cheng, X. Dielectric metalens by multilayer nanoimprint lithography and solution phase epitaxy. Adv. Eng. Mater. 2023, 25, 2201824. [Google Scholar] [CrossRef]
- Choi, H.; Kim, J.; Kim, W.; Seong, J.; Park, C.; Choi, M.; Kim, N.; Ha, J.; Qiu, C.-W.; Rho, J.; et al. Realization of high aspect ratio metalenses by facile nanoimprint lithography using water-soluble stamps. Photonix 2023, 4, 18. [Google Scholar] [CrossRef]
- Alnakhi, Z.; Liu, Z.; AlQatari, F.; Cao, H.; Li, X. UV-assisted nanoimprint lithography: The impact of the loading effect in silicon on nanoscale patterns of metalens. Nanoscale Adv. 2024, 6, 2954–2967. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Chen, J.; Yang, H.; Wang, B. Reflective metalens with broadband achromatic polarization-insensitive properties in the near-infrared. Opt. Commun. 2023, 549, 129909. [Google Scholar] [CrossRef]
- Yang, F.; Lin, H.-I.; Shalaginov, M.Y.; Stoll, K.; An, S.; Rivero-Baleine, C.; Kang, M.; Agarwal, A.; Richardson, K.; Zhang, H.; et al. Reconfigurable Parfocal Zoom Metalens. Adv. Opt. Mater. 2022, 10, 2200721. [Google Scholar] [CrossRef]
- Cheng, W.; Feng, J.; Wang, Y.; Peng, Z.; Zang, S.; Cheng, H.; Ren, X.; Shuai, Y.; Liu, H.; Wu, J.; et al. Genetic algorithms designed ultra-broadband achromatic metalens in the visible. Optik 2022, 258, 168868. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, J.; Lin, Y.-S. Reconfigurable metalens with dual-linear-focus phase distribution. Opt. Laser Technol. 2023, 164, 109526. [Google Scholar] [CrossRef]
- Zhang, J.; Lan, X.; Zhang, C.; Liu, X.; He, F. Switchable near-eye integral imaging display with difunctional metalens array. Optik 2020, 204, 163852. [Google Scholar] [CrossRef]
- Li, K.; Martins, A.; Bohora, S.; Dhakal, A.; Martins, E.R.; Krauss, T.F. Hybrid Metalens for Miniaturised Ultraviolet Fluorescence Detection. Adv. Opt. Mater. 2023, 11, 2300852. [Google Scholar] [CrossRef]
- Zhao, L.; Jiang, X.; Wang, Z.; Chen, Y.; Chen, L.; Gao, B.; Yu, W. Broadband Achromatic Metalens for Tunable Focused Vortex Beam Generation in the Near-Infrared Range. Nanomaterials 2023, 13, 2765. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Deng, Y.; Wang, C.; Lin, Y.; Han, Y.; Liu, J.; Liu, X.; Li, H.; Korvink, J.G.; Deng, Y. Portable astronomical observation system based on large-aperture concentric-ring metalens. Light Sci. Appl. 2025, 14, 2. [Google Scholar] [CrossRef]
- Languy, F.; Lenaerts, C.; Loicq, J.; Thibert, T.; Habraken, S. Performance of solar concentrator made of an achromatic Fresnel doublet measured with a continuous solar simulator and comparison with a singlet. Sol. Energy Mater. Sol. Cells 2013, 109, 70–76. [Google Scholar] [CrossRef]
- Lee, K.; Lee, S.-Y.; Jung, J.; Lee, B. Plasmonic achromatic doublet lens. Opt. Express 2015, 23, 5800–5808. [Google Scholar] [CrossRef] [PubMed]
- Vallerotto, G.; Victoria, M.; Jost, N.; Askins, S.; Domínguez, C.; Herrero, R.; Antón, I. Comparison of achromatic doublet on glass Fresnel lenses for concentrator photovoltaics. Opt. Express 2021, 29, 20601–20616. [Google Scholar] [CrossRef]
- Fernandez, E.J.; Artal, P. Achromatic doublet intraocular lens for full aberration correction. Biomed. Opt. Express 2017, 8, 2396–2404. [Google Scholar] [CrossRef]
- Beadie, G.; Mait, J.N. Material selection for GRIN-based achromatic doublets. Opt. Express 2019, 27, 17771–17794. [Google Scholar] [CrossRef]
- Dong, B.; Yang, Y.; Liu, Y.; Yang, C.; Xue, C. Theoretical model and optimization of diffractive optical elements with aspheric substrates in ophthalmology. Appl. Opt. 2023, 62, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Petrov, M.; Bibikov, S.; Yuzifovich, Y.; Skidanov, R.; Nikonorov, A. Color correction with 3D lookup tables in diffractive optical imaging systems. Procedia Eng. 2017, 201, 73–82. [Google Scholar] [CrossRef]
- Yang, X.; Souza, M.; Wang, K.; Chakravarthula, P.; Fu, Q.; Heidrich, W. End-to-End Hybrid Refractive-Diffractive Lens Design with Differentiable Ray-Wave Model. In Proceedings of the SIGGRAPH Asia 2024 Conference Papers, Tokyo, Japan, 3–6 December 2024. [Google Scholar] [CrossRef]
- Liu, D.; Wang, L.; Shi, H.; Gao, G.; Li, J.; Bian, J.; Fan, B.; Du, J. The design of multi-wavelength confocal diffractive optical element based on set operation. Optik 2023, 277, 170667. [Google Scholar] [CrossRef]
- Chan, J.; Zhao, X.; Zhong, S.; Zhang, T.; Fan, B. Chromatic Aberration Correction in Harmonic Diffractive Lenses Based on Compressed Sensing Encoding Imaging. Sensors 2024, 24, 2471. [Google Scholar] [CrossRef]
- Ou, K.; Yu, F.; Li, G.; Wang, W.; Chen, J.; Miroshnichenko, A.E.; Huang, L.; Li, T.; Li, Z.; Chen, X.; et al. Broadband Achromatic Metalens in Mid-Wavelength Infrared. Laser Photonics Rev. 2021, 15, 2100020. [Google Scholar] [CrossRef]
- Wang, S.; Wu, P.C.; Su, V.-C.; Lai, Y.-C.; Chen, M.-K.; Kuo, H.Y.; Chen, B.H.; Chen, Y.H.; Huang, T.-T.; Wang, J.-H.; et al. A broadband achromatic metalens in the visible. Nat. Nanotech. 2018, 13, 227–232. [Google Scholar] [CrossRef]
- Chang, S.; Zhang, L.; Duan, Y.; Rahman, T.; Islam, A.; Ni, X. Achromatic metalenses for full visible spectrum with extended group delay control via dispersion-matched layers. Nat. Commun. 2024, 15, 9627. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, P.C.; Su, V.-C.; Lai, Y.-C.; Chu, C.H.; Chen, J.-W.; Lu, S.-H.; Chen, J.; Xu, B.; Kuan, C.-H.; et al. Broadband achromatic optical metasurface devices. Nat. Commun. 2017, 8, 187. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Overvig, A.C.; Lu, M.; Stein, A.; Yu, N. Broadband achromatic dielectric metalenses. Light Sci. Appl. 2018, 7, 85. [Google Scholar] [CrossRef]
- Shen, Z.; Huang, S. Generation of Subdiffraction Optical Needles by Simultaneously Generating and Focusing Azimuthally Polarized Vortex Beams through Pancharatnam–Berry Metalenses. Nanomaterials 2022, 12, 4074. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, F.; Li, Q.; Wu, J.; Wu, L. A high-efficiency dual-wavelength achromatic metalens based on Pancharatnam-Berry phase manipulation. Opt. Express 2018, 26, 34919–34927. [Google Scholar] [CrossRef]
- Shen, Y.J.; Xie, X.; Pu, M.B.; Zhang, F.; Ma, X.L.; Guo, Y.H.; Li, X.; Wang, C.T.; Luo, X.G. Achromatic metalens based on coordinative modulation of propagation phase and geometric phase. Opto-Electron. Eng. 2020, 47, 200237. [Google Scholar] [CrossRef]
- Sun, X.; Yan, M.; Huo, S.; Fan, J.; Zhao, S.; Guo, R.; Zeng, Y. High-NA broadband achromatic metalens in the visible range. Opt. Mater. Express 2023, 13, 2690–2698. [Google Scholar] [CrossRef]
- Balli, F.; Sultan, M.A.; Ozdemir, A.; Hastings, J.T. An ultrabroadband 3D achromatic metalens. Nanophotonics 2021, 10, 1259–1264. [Google Scholar] [CrossRef]
- Li, J.; Liu, W.; Xu, H.; Huang, Z.; Wang, J.; Wen, J.; Yang, J.; Guan, J.; Wang, S.; Alù, A.; et al. An RGB-achromatic aplanatic metalens. Laser Photonics Rev. 2024, 18, 2300729. [Google Scholar] [CrossRef]
- Yoon, G.; Kim, K.; Huh, D.; Lee, H.; Rho, J. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun. 2020, 11, 2268. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, W.; Yu, F.; Liu, Q.; Guo, Z.; Li, G.; Chen, P.; Lu, W. The Impact of Manufacturing Imperfections on the Performance of Metalenses and a Manufacturing-Tolerant Design Method. Micromachines 2022, 13, 1531. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, Q.; Yang, W.; Ji, Z.; Jin, L.; Ma, X.; Song, Q.; Boltasseva, A.; Han, J.; Shalaev, V.M.; et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat. Commun. 2021, 12, 5560. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, C.; Wei, Y.; Lin, Y.; Han, Y.; Deng, Y. High-Efficiency Achromatic Metalens Topologically Optimized in the Visible. Nanomaterials 2023, 13, 890. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, M.; Pu, M.; Zhang, F.; Sang, D.; Guo, Y.; Li, X.; Ma, X.; Luo, X. Designing high-efficiency extended depth-of-focus metalens via topology-shape optimization. Nanophotonics 2022, 11, 2967–2975. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, C.; Yao, L.; Zhang, L.; Fu, Y.; Lin, Y.; Han, Y.; Deng, Y. High-efficiency achromatic metalens in long-wavelength infrared composed of topologically optimized building blocks. Opt. Mater. 2024, 151, 115314. [Google Scholar] [CrossRef]
- Jiang, Q.; Liu, J.; Li, J.; Jing, X.; Li, X.; Huang, L.; Wang, Y. Multiwavelength Achromatic Metalens in Visible by Inverse Design. Adv. Opt. Mater. 2023, 11, 2300077. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, S.; Wen, Y.; Sun, J.; Zhou, J. High Efficiency Visible Achromatic Metalens Design via Deep Learning. Adv. Opt. Mater. 2023, 11, 2300394. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, M.; Zhang, L.; Zhang, R.; Cheng, H.; Shen, C.; Wei, S. Broadband achromatic metalens design based on predictive neural network and particle swarm optimization-genetic algorithm. New J. Phys. 2023, 25, 103040. [Google Scholar] [CrossRef]
- Hwang, S.R.; Hwang, C.B. Deep learning neural network designed large dimensional neutron focusing metalens. Eur. Phys. J. Plus 2025, 140, 11. [Google Scholar] [CrossRef]
- Wu, H.; Yi, Y.; Zhang, N.; Zhang, Y.; Wu, H.; Yi, Z.; Liu, S.; Yi, Y.; Tang, B.; Sun, T. Inverse design broadband achromatic metasurfaces for longwave infrared. Opt. Mater. 2024, 148, 114923. [Google Scholar] [CrossRef]
- Xu, S.; Kang, P.; Chen, J.; Hu, Z.; Chang, W.; Huang, F. Inverse design broadband achromatic and polarizations-insensitive metalens in mid-infrared. Opt. Commun. 2025, 579, 131586. [Google Scholar] [CrossRef]
- Hongli, Y.; Zhaofeng, C.; Xiaotong, L. Broadband achromatic and wide field of view metalens-doublet by inverse design. Opt. Express 2024, 32, 15315. [Google Scholar] [CrossRef]
- Che, X.; Yu, Y.; Gao, Z.; Yuan, Q. A broadband achromatic Alvarez metalens. Opt. Laser Technol. 2023, 159, 108985. [Google Scholar] [CrossRef]
- Yao, Z.; Chen, W.; Chen, Y. Double-layer metalens with a reduced meta-atom aspect ratio. Opt. Lett. 2021, 46, 1510–1513. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Zhang, J.; Wu, Q.; Martins, A.; Sun, Q.; Liu, Z.; Long, Y.; Martins, E.R.; Li, J.; Liang, H. RGB achromatic metalens doublet for digital imaging. Nano Lett. 2022, 22, 3969–3975. [Google Scholar] [CrossRef]
- Pan, C.-F.; Wang, H.; Wang, H.; Nair, P.; Ruan, Q.; Wredh, S.; Ke, Y.; Chan, J.Y.E.; Zhang, W.; Yang, J.K.W. 3D-printed multilayer structures for high–numerical aperture achromatic metalenses. Sci. Adv. 2023, 9, eadj9262. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, S.; Xu, L.; Cao, Y.; Tao, Y.; Chen, Y.; Zhang, Z.; Chen, C.; Li, J.; Hu, Y.; et al. A holographic broadband achromatic metalens. Laser Photonics Rev. 2023, 18, 2300880. [Google Scholar] [CrossRef]
- Xiao, X.-J.; Zhu, S.-N.; Li, T. Performance analysis of the multiwavelength achromatic metalens. Chin. Opt. 2021, 14, 823–830. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Radlak, K.; Malinski, L.; Smolka, B. Deep Learning Based Switching Filter for Impulsive Noise Removal in Color Images. Sensors 2020, 20, 2782. [Google Scholar] [CrossRef]
- Dong, Y.; Zheng, B.; Li, H.; Tang, H.; Zhao, H.; Huang, Y.; An, S.; Zhang, H. Achromatic single metalens imaging via deep neural network. ACS Photonics 2024, 11, 1645–1656. [Google Scholar] [CrossRef]
- Cheng, W.; Wang, Y.; Zhang, Y.; Chen, H.; Lu, Z.; Zhao, F.; Wang, Y.; Wu, J.; Yang, J. Broadband achromatic imaging of a metalens with optoelectronic computing fusion. Nano Lett. 2024, 24, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, Y.; Huang, C.; Zhou, Z.-W.; Li, M.; Zhang, Z.; Chen, J. Deep-learning enhanced high-quality imaging in metalens-integrated camera. Opt. Lett. 2024, 49, 2853–2856. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Huang, H.; Zhang, X.; Ye, D.; Li, Y.; Wang, L.; Ma, Y.; Li, Y. Neural-Network-Enhanced Metalens Camera for High-Definition, Dynamic Imaging in the Long-Wave Infrared Spectrum. ACS Photonics 2025, 12, 140–151. [Google Scholar] [CrossRef]
- Chung, H.; Zhang, F.; Li, H.; Miller, O.D.; Smith, H.I. Inverse design of high-NA metalens for maskless lithography. Nanophotonics 2023, 12, 2371–2381. [Google Scholar] [CrossRef]
- Kanwal, S.; Wen, J.; Yu, B.; Chen, X.; Kumar, D.; Kang, Y.; Bai, C.; Ubaid, S.; Zhang, D. Polarization insensitive, broadband, near diffraction-limited metalens in ultraviolet region. Nanomaterials 2020, 10, 1439. [Google Scholar] [CrossRef]
- Zhang, Q.; Dong, F.; Li, H.X.; Wang, Z.X.; Liang, G.F.; Zhang, Z.H.; Wen, Z.Q.; Shang, Z.G.; Chen, G.; Dai, L.; et al. High-Numerical-Aperture Dielectric Metalens for Super-Resolution Focusing of Oblique Incident Light. Adv. Opt. Mater. 2020, 8, 1901885. [Google Scholar] [CrossRef]
- Gao, X.; Liu, Y.; Chen, H.; Lin, Y.-S.; Chen, X. All-dielectric bifocal metalens with diffraction-limited focusing and polarization-dependent characteristics. Int. J. Mech. Sci. 2025, 286, 109916. [Google Scholar] [CrossRef]
- Li, Y.; Shang, Z.; Li, Z.; Wu, S.; Dang, S.; Xia, L.; Zhou, Y.; Wen, Z.; Zhang, Z.; Xiang, J.; et al. Water-immersion metalens for generating superoscillation non-diffracting beams. Opt. Laser Technol. 2025, 184, 112492. [Google Scholar] [CrossRef]
- Dai, X.; Dong, F.; Zhang, K.; Liao, D.; Li, S.; Shang, Z.; Zhou, Y.; Liang, G.; Zhang, Z.; Wen, Z.; et al. Holographic super-resolution metalens for achromatic sub-wavelength focusing. ACS Photonics 2021, 8, 1439–1447. [Google Scholar] [CrossRef]
- Lin, P.; Chen, W.T.; Yousef, K.M.A.; Marchioni, J.; Zhu, A.; Capasso, F.; Cheng, J.-X. Coherent Raman scattering imaging with a near-infrared achromatic metalens. APL Photonics 2021, 6, 096107. [Google Scholar] [CrossRef] [PubMed]
- Barulin, A.; Barulina, E.; Oh, D.K.; Jo, Y.; Park, H.; Park, S.; Kye, H.; Kim, J.; Yoo, J.; Kim, J.; et al. Axially multifocal metalens for 3D volumetric photoacoustic imaging of neuromelanin in live brain organoid. Sci. Adv. 2025, 11, eadr0654. [Google Scholar] [CrossRef] [PubMed]
- Moghaddasi, M.; Perez Coca, E.; Ye, D.; Flores, D.; Wu, X.; Jalal, A.; Ren, Z.; Abrinaei, F.; Hu, B. Wide FOV metalens for near-infrared capsule endoscopy: Advancing compact medical imaging. Nanophotonics 2024, 13, 4417–4428. [Google Scholar] [CrossRef] [PubMed]
- Shalaginov, M.Y.; An, S.; Yang, F.; Su, P.; Lyzwa, D.; Agarwal, A.M.; Zhang, H.; Hu, J.; Gu, T. Single-Element Diffraction-Limited Fisheye Metalens. Nano Lett. 2020, 20, 7429–7437. [Google Scholar] [CrossRef]
- Li, S.; Zhou, W.; Li, Y.; Lu, Z.; Zhao, F.; He, X.; Jiang, X.; Du, T.; Zhang, Z.; Deng, Y.; et al. Collision of high-resolution wide FOV metalens cameras and vision tasks. Nanophotonics 2025, 14, 315–326. [Google Scholar] [CrossRef]
- Engelberg, J.; Zhou, C.; Mazurski, N.; Bar-David, J.; Kristensen, A.; Levy, U. Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications. Nanophotonics 2020, 9, 361–370. [Google Scholar] [CrossRef]
- Cao, G.; Wang, S.; Liu, W.; Zhang, H.; Han, J.; Xu, X.; Liu, J.; Zhao, W.; Li, H.; Lin, H.; et al. Two hundred nanometer thin multifocal graphene oxide metalens for varying magnification broadband imaging. ACS Nano. 2024, 18, 35550–35558. [Google Scholar] [CrossRef]
- Barulin, A.; Kim, Y.; Oh, D.K.; Jang, J.; Park, H.; Rho, J.; Kim, I. Dual-wavelength metalens enables Epi-fluorescence detection from single molecules. Nat. Commun. 2024, 15, 26. [Google Scholar] [CrossRef]
- Shanker, A.; Fröch, J.E.; Mukherjee, S.; Zhelyeznyakov, M.; Brunton, S.L.; Seibel, E.J.; Majumdar, A. Quantitative phase imaging endoscopy with a metalens. Light Sci. Appl. 2024, 13, 305. [Google Scholar] [CrossRef]
- Chen, J.; Huang, S.-X.; Chan, K.F.; Wu, G.-B.; Chan, C.H. 3D-printed aberration-free terahertz metalens for ultra-broadband achromatic super-resolution wide-angle imaging with high numerical aperture. Nat. Commun. 2025, 16, 363. [Google Scholar] [CrossRef]
- Park, J.-S.; Lim, S.W.D.; Amirzhan, A.; Kang, H.; Karrfalt, K.; Kim, D.; Leger, J.; Urbas, A.; Ossiander, M.; Li, Z.; et al. All-glass 100 mm diameter visible metalens for imaging the cosmos. ACS Nano 2024, 18, 3187–3198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chang, S.; Chen, X.; Ding, Y.; Rahman, M.T.; Duan, Y.; Stephen, M.; Ni, X. High-Efficiency, 80 mm Aperture Metalens Telescope. Nano Lett. 2023, 23, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, S.; Liang, H.; Ren, X.; Luo, L.; Ling, Y.; Liu, S.; Su, Y.; Wu, S.-T. Ultracompact multifunctional metalens visor for augmented reality displays. PhotoniX 2022, 3, 29. [Google Scholar] [CrossRef]
- So, S.; Kim, J.; Badloe, T.; Lee, C.; Yang, Y.; Kang, H.; Rho, J. Multicolor and 3D Holography Generated by Inverse-Designed Single-Cell Metasurfaces. Adv. Mater. 2023, 35, 2208520. [Google Scholar] [CrossRef]
- Yin, Y.; Jiang, Q.; Wang, H.; Liu, J.; Xie, Y.; Wang, Q.; Wang, Y.; Huang, L. Multi-Dimensional Multiplexed Metasurface Holography by Inverse Design. Adv. Mater. 2024, 36, 2312303. [Google Scholar] [CrossRef]
- Sun, S.; Li, J.; Li, X.; Zhao, X.; Li, K.; Chen, L. Dynamic 3D metasurface holography via cascaded polymer dispersed liquid crystal. Microsyst. Nanoeng. 2024, 10, 203. [Google Scholar] [CrossRef]
- Bosch, M.; Shcherbakov, M.; Won, K.; Lee, H.-S.; Kim, Y.; Shvets, G. Voltage-tunable multifunctional zoom imaging metalenses. ACS Photonics 2025, 12, 728–736. [Google Scholar] [CrossRef]
- Wang, C.; Yu, Z.; Zhang, Q.; Sun, Y.; Tao, C.; Wu, F.; Zheng, Z. Metalens eyepiece for 3D holographic near-eye display. Nanomaterials 2021, 11, 1920. [Google Scholar] [CrossRef]
- Fan, Z.-B.; Cheng, Y.-F.; Chen, Z.-M.; Liu, X.; Lu, W.-L.; Li, S.-H.; Jiang, S.-J.; Qin, Z.; Dong, J.-W. Integral imaging near-eye 3D display using a nanoimprint metalens array. eLight 2024, 4, 3. [Google Scholar] [CrossRef]
- Dirdal, C.A.; Milenko, K.; Summanwar, A.; Dullo, F.T.; Thrane, P.C.V.; Rasoga, O.; Avram, A.M.; Dinescu, A.; Baracu, A.M. UV-Nanoimprint and Deep Reactive Ion Etching of High Efficiency Silicon Metalenses: High Throughput at Low Cost with Excellent Resolution and Repeatability. Nanomaterials 2023, 13, 436. [Google Scholar] [CrossRef]
- Kim, J.; Seong, J.; Kim, W.; Lee, G.-Y.; Kim, S.; Kim, H.; Moon, S.-W.; Oh, D.K.; Yang, Y.; Park, J.; et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible. Nat. Mater. 2023, 22, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Javed, I.; Kim, J.; Naveed, M.A.; Oh, D.K.; Jeon, D.; Kim, I.; Zubair, M.; Massoud, Y.; Mehmood, M.Q.; Rho, J. Broad-band polarization-insensitive metasurface holography with a single-phase map. ACS Appl. Mater. Interfaces 2022, 14, 36019–36026. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Wang, Y.; Wei, Y.; Hu, T.; Xiao, S.; He, G.; Zhao, M.; Xia, J.; Yang, Z. Optical multiparameter detection system based on a broadband achromatic metalens array. Adv. Opt. Mater. 2021, 9, 2100772. [Google Scholar] [CrossRef]
- Qiu, X.; Zhang, J.; Fan, Y.; Zhou, J.; Chen, L.; Tsai, D.P. Metasurface enabled high-order differentiator. Nat. Commun. 2025, 16, 2437. [Google Scholar] [CrossRef]
- Du, X.; Shen, W.; Li, J.; Chu, Y.; Sun, J.; Wang, J.; Ji, J.; Chen, C.; Zhu, S.; Li, T. Full-color quasi-achromatic imaging with a dual-functional metasurface. Nano Lett. 2025, 25, 8143–8150. [Google Scholar] [CrossRef]
Material | Wavelength | NA | Fabrication | Focusing Efficiency | Ref. |
---|---|---|---|---|---|
Si | 1000 nm–1700 nm | 0.15 | Not mentioned | 64% | [1] |
Si | 3500 nm–4750 nm | 0.45 | EBL | 45% (4250 nm) | [40] |
TiO2 | 490 nm–550 nm | 0.20 | Electron beam deposition. | Not mentioned | [9] |
GaN | 400 nm–660 nm | 0.15 | Mask transfer and etching process | 40% | [41] |
SiN | 400 nm–700 nm | 0.27 | EBL | 50% | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Li, L.; Zhou, J. The Principle and Application of Achromatic Metalens. Micromachines 2025, 16, 660. https://doi.org/10.3390/mi16060660
Liu R, Li L, Zhou J. The Principle and Application of Achromatic Metalens. Micromachines. 2025; 16(6):660. https://doi.org/10.3390/mi16060660
Chicago/Turabian StyleLiu, Runsheng, Lihua Li, and Jian Zhou. 2025. "The Principle and Application of Achromatic Metalens" Micromachines 16, no. 6: 660. https://doi.org/10.3390/mi16060660
APA StyleLiu, R., Li, L., & Zhou, J. (2025). The Principle and Application of Achromatic Metalens. Micromachines, 16(6), 660. https://doi.org/10.3390/mi16060660