The Principle and Application of Achromatic Metalens
Abstract
1. Introduction
2. The Principle of Metalens
3. Achromatic Metalens
4. Application of Metalens
5. Fabrication Methods
6. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Y.; Fan, Q.; Xu, T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron. Adv. 2021, 4, 200008. [Google Scholar] [CrossRef]
- Sun, P.; Zhao, Q.; Li, Y.; Liu, S.; Su, C.; Jiang, J.; Yun, M.; Zhao, Y.; Wang, J. Dual high-Q resonance sensing for refractive index and temperature based on all-dielectric asymmetric metasurface. Opt. Commun. 2024, 554, 130134. [Google Scholar] [CrossRef]
- Chen, J.; Guan, Z.; Tang, F.; Wu, J.; Ye, X.; Yang, L. Metalens design with broadband achromatic and Longitudinal High-Tolerance Imaging. Opt. Commun. 2025, 577, 131389. [Google Scholar] [CrossRef]
- Sun, C.; Pi, H.; Kiang, K.S.; Yan, J.; Ou, J.-Y. Near-Infrared Metalens Empowered Dual-Mode High Resolution and Large FOV Microscope. Adv. Opt. Mater. 2024, 12, 2400512. [Google Scholar] [CrossRef]
- Shah, Y.D.; Dada, A.C.; Grant, J.P.; Cumming, D.R.S.; Altuzarra, C.; Nowack, T.S.; Lyons, A.; Clerici, M.; Faccio, D. An all-dielectric metasurface polarimeter. ACS Photonics 2022, 9, 3245–3252. [Google Scholar] [CrossRef]
- Xie, N.; Carson, M.D.; Fröch, J.E.; Majumdar, A.; Seibel, E.J.; Böhringer, K.F. Large field-of-view short-wave infrared metalens for scanning fiber endoscopy. J. Biomed. Opt. 2023, 28, 094802. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Wang, D.; Shi, X.; Fan, Z. Transmissive mid-infrared achromatic bifocal metalens with polarization sensitivity. Opt. Express 2021, 29, 17173–17182. [Google Scholar] [CrossRef]
- Li, M.; Liu, M.; Chen, Y.; Hu, Z.-D.; Wu, J.; Wang, J. All-Dielectric Metasurface Lenses for Achromatic Imaging Applications. Nanoscale Res. Lett. 2022, 17, 81. [Google Scholar] [CrossRef] [PubMed]
- Khorasaninejad, M.; Shi, Z.; Zhu, A.Y.; Chen, W.T.; Sanjeev, V.; Zaidi, A.; Capasso, F. Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion. Nano Lett. 2017, 17, 1819–1824. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhu, A.Y.; Sisler, J.; Bharwani, Z.; Capasso, F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun. 2019, 10, 355. [Google Scholar] [CrossRef]
- Guo, Q.; Shi, Z.; Huang, Y.; Alexander, E.; Qiu, C.; Capasso, F.; Zickler, T. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders. Proc. Natl. Acad. Sci. USA. 2019, 116, 22959–22965. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Yao, J.; Wang, Z.; Zhou, J.; Tsai, D.P. Resonant Meta-Lens in the Visible. Laser Photonics Rev. 2025, 19, 2401740. [Google Scholar] [CrossRef]
- Fan, Z.B.; Qiu, H.Y.; Zhang HLet, a.l. A broadband achromatic metalens array for integral imaging in the visible. Light Sci. Appl. 2019, 8, 67. [Google Scholar] [CrossRef]
- Fan, Z.-B.; Shao, Z.-K.; Xie, M.-Y.; Pang, X.-N.; Ruan, W.-S.; Zhao, F.-L.; Chen, Y.-J.; Yu, S.-Y.; Dong, J.-W. Silicon Nitride Metalenses for Close-to-One Numerical Aperture and Wide-Angle Visible Imaging. Phys. Rev. Appl. 2018, 10, 014005. [Google Scholar] [CrossRef]
- Fröch, J.E.; Chakravarthula, P.; Sun, J.; Tseng, E.; Colburn, S.; Zhan, A.; Miller, F.; Wirth-Singh, A.; Tanguy, Q.A.A.; Han, Z.; et al. Beating spectral bandwidth limits for large aperture broadband nano-optics. Nat. Commun. 2025, 16, 3025. [Google Scholar] [CrossRef]
- Qiu, Y.; Deng, L.; Zhan, Y.; Li, G.; Guan, J. The Effect of Height Error on Performance of Propagation Phase-Based Metalens. Micromachines 2024, 15, 540. [Google Scholar] [CrossRef]
- Einck, V.J.; Torfeh, M.; McClung, A.; Jung, D.E.; Mansouree, M.; Arbabi, A.; Watkins, J.J. Scalable nanoimprint lithography process for manufacturing visible metasurfaces composed of high aspect ratio TiO2 meta-atoms. ACS Photonics 2021, 8, 24002409. [Google Scholar] [CrossRef]
- Quan, D.; Liu, X.; Tang, Y.; Liu, H.; Min, S.; Li, G.; Srivastava, A.K.; Cheng, X. Dielectric metalens by multilayer nanoimprint lithography and solution phase epitaxy. Adv. Eng. Mater. 2023, 25, 2201824. [Google Scholar] [CrossRef]
- Choi, H.; Kim, J.; Kim, W.; Seong, J.; Park, C.; Choi, M.; Kim, N.; Ha, J.; Qiu, C.-W.; Rho, J.; et al. Realization of high aspect ratio metalenses by facile nanoimprint lithography using water-soluble stamps. Photonix 2023, 4, 18. [Google Scholar] [CrossRef]
- Alnakhi, Z.; Liu, Z.; AlQatari, F.; Cao, H.; Li, X. UV-assisted nanoimprint lithography: The impact of the loading effect in silicon on nanoscale patterns of metalens. Nanoscale Adv. 2024, 6, 2954–2967. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Chen, J.; Yang, H.; Wang, B. Reflective metalens with broadband achromatic polarization-insensitive properties in the near-infrared. Opt. Commun. 2023, 549, 129909. [Google Scholar] [CrossRef]
- Yang, F.; Lin, H.-I.; Shalaginov, M.Y.; Stoll, K.; An, S.; Rivero-Baleine, C.; Kang, M.; Agarwal, A.; Richardson, K.; Zhang, H.; et al. Reconfigurable Parfocal Zoom Metalens. Adv. Opt. Mater. 2022, 10, 2200721. [Google Scholar] [CrossRef]
- Cheng, W.; Feng, J.; Wang, Y.; Peng, Z.; Zang, S.; Cheng, H.; Ren, X.; Shuai, Y.; Liu, H.; Wu, J.; et al. Genetic algorithms designed ultra-broadband achromatic metalens in the visible. Optik 2022, 258, 168868. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, J.; Lin, Y.-S. Reconfigurable metalens with dual-linear-focus phase distribution. Opt. Laser Technol. 2023, 164, 109526. [Google Scholar] [CrossRef]
- Zhang, J.; Lan, X.; Zhang, C.; Liu, X.; He, F. Switchable near-eye integral imaging display with difunctional metalens array. Optik 2020, 204, 163852. [Google Scholar] [CrossRef]
- Li, K.; Martins, A.; Bohora, S.; Dhakal, A.; Martins, E.R.; Krauss, T.F. Hybrid Metalens for Miniaturised Ultraviolet Fluorescence Detection. Adv. Opt. Mater. 2023, 11, 2300852. [Google Scholar] [CrossRef]
- Zhao, L.; Jiang, X.; Wang, Z.; Chen, Y.; Chen, L.; Gao, B.; Yu, W. Broadband Achromatic Metalens for Tunable Focused Vortex Beam Generation in the Near-Infrared Range. Nanomaterials 2023, 13, 2765. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Deng, Y.; Wang, C.; Lin, Y.; Han, Y.; Liu, J.; Liu, X.; Li, H.; Korvink, J.G.; Deng, Y. Portable astronomical observation system based on large-aperture concentric-ring metalens. Light Sci. Appl. 2025, 14, 2. [Google Scholar] [CrossRef]
- Languy, F.; Lenaerts, C.; Loicq, J.; Thibert, T.; Habraken, S. Performance of solar concentrator made of an achromatic Fresnel doublet measured with a continuous solar simulator and comparison with a singlet. Sol. Energy Mater. Sol. Cells 2013, 109, 70–76. [Google Scholar] [CrossRef]
- Lee, K.; Lee, S.-Y.; Jung, J.; Lee, B. Plasmonic achromatic doublet lens. Opt. Express 2015, 23, 5800–5808. [Google Scholar] [CrossRef] [PubMed]
- Vallerotto, G.; Victoria, M.; Jost, N.; Askins, S.; Domínguez, C.; Herrero, R.; Antón, I. Comparison of achromatic doublet on glass Fresnel lenses for concentrator photovoltaics. Opt. Express 2021, 29, 20601–20616. [Google Scholar] [CrossRef]
- Fernandez, E.J.; Artal, P. Achromatic doublet intraocular lens for full aberration correction. Biomed. Opt. Express 2017, 8, 2396–2404. [Google Scholar] [CrossRef]
- Beadie, G.; Mait, J.N. Material selection for GRIN-based achromatic doublets. Opt. Express 2019, 27, 17771–17794. [Google Scholar] [CrossRef]
- Dong, B.; Yang, Y.; Liu, Y.; Yang, C.; Xue, C. Theoretical model and optimization of diffractive optical elements with aspheric substrates in ophthalmology. Appl. Opt. 2023, 62, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Petrov, M.; Bibikov, S.; Yuzifovich, Y.; Skidanov, R.; Nikonorov, A. Color correction with 3D lookup tables in diffractive optical imaging systems. Procedia Eng. 2017, 201, 73–82. [Google Scholar] [CrossRef]
- Yang, X.; Souza, M.; Wang, K.; Chakravarthula, P.; Fu, Q.; Heidrich, W. End-to-End Hybrid Refractive-Diffractive Lens Design with Differentiable Ray-Wave Model. In Proceedings of the SIGGRAPH Asia 2024 Conference Papers, Tokyo, Japan, 3–6 December 2024. [Google Scholar] [CrossRef]
- Liu, D.; Wang, L.; Shi, H.; Gao, G.; Li, J.; Bian, J.; Fan, B.; Du, J. The design of multi-wavelength confocal diffractive optical element based on set operation. Optik 2023, 277, 170667. [Google Scholar] [CrossRef]
- Chan, J.; Zhao, X.; Zhong, S.; Zhang, T.; Fan, B. Chromatic Aberration Correction in Harmonic Diffractive Lenses Based on Compressed Sensing Encoding Imaging. Sensors 2024, 24, 2471. [Google Scholar] [CrossRef]
- Ou, K.; Yu, F.; Li, G.; Wang, W.; Chen, J.; Miroshnichenko, A.E.; Huang, L.; Li, T.; Li, Z.; Chen, X.; et al. Broadband Achromatic Metalens in Mid-Wavelength Infrared. Laser Photonics Rev. 2021, 15, 2100020. [Google Scholar] [CrossRef]
- Wang, S.; Wu, P.C.; Su, V.-C.; Lai, Y.-C.; Chen, M.-K.; Kuo, H.Y.; Chen, B.H.; Chen, Y.H.; Huang, T.-T.; Wang, J.-H.; et al. A broadband achromatic metalens in the visible. Nat. Nanotech. 2018, 13, 227–232. [Google Scholar] [CrossRef]
- Chang, S.; Zhang, L.; Duan, Y.; Rahman, T.; Islam, A.; Ni, X. Achromatic metalenses for full visible spectrum with extended group delay control via dispersion-matched layers. Nat. Commun. 2024, 15, 9627. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, P.C.; Su, V.-C.; Lai, Y.-C.; Chu, C.H.; Chen, J.-W.; Lu, S.-H.; Chen, J.; Xu, B.; Kuan, C.-H.; et al. Broadband achromatic optical metasurface devices. Nat. Commun. 2017, 8, 187. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Overvig, A.C.; Lu, M.; Stein, A.; Yu, N. Broadband achromatic dielectric metalenses. Light Sci. Appl. 2018, 7, 85. [Google Scholar] [CrossRef]
- Shen, Z.; Huang, S. Generation of Subdiffraction Optical Needles by Simultaneously Generating and Focusing Azimuthally Polarized Vortex Beams through Pancharatnam–Berry Metalenses. Nanomaterials 2022, 12, 4074. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, F.; Li, Q.; Wu, J.; Wu, L. A high-efficiency dual-wavelength achromatic metalens based on Pancharatnam-Berry phase manipulation. Opt. Express 2018, 26, 34919–34927. [Google Scholar] [CrossRef]
- Shen, Y.J.; Xie, X.; Pu, M.B.; Zhang, F.; Ma, X.L.; Guo, Y.H.; Li, X.; Wang, C.T.; Luo, X.G. Achromatic metalens based on coordinative modulation of propagation phase and geometric phase. Opto-Electron. Eng. 2020, 47, 200237. [Google Scholar] [CrossRef]
- Sun, X.; Yan, M.; Huo, S.; Fan, J.; Zhao, S.; Guo, R.; Zeng, Y. High-NA broadband achromatic metalens in the visible range. Opt. Mater. Express 2023, 13, 2690–2698. [Google Scholar] [CrossRef]
- Balli, F.; Sultan, M.A.; Ozdemir, A.; Hastings, J.T. An ultrabroadband 3D achromatic metalens. Nanophotonics 2021, 10, 1259–1264. [Google Scholar] [CrossRef]
- Li, J.; Liu, W.; Xu, H.; Huang, Z.; Wang, J.; Wen, J.; Yang, J.; Guan, J.; Wang, S.; Alù, A.; et al. An RGB-achromatic aplanatic metalens. Laser Photonics Rev. 2024, 18, 2300729. [Google Scholar] [CrossRef]
- Yoon, G.; Kim, K.; Huh, D.; Lee, H.; Rho, J. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun. 2020, 11, 2268. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, W.; Yu, F.; Liu, Q.; Guo, Z.; Li, G.; Chen, P.; Lu, W. The Impact of Manufacturing Imperfections on the Performance of Metalenses and a Manufacturing-Tolerant Design Method. Micromachines 2022, 13, 1531. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, Q.; Yang, W.; Ji, Z.; Jin, L.; Ma, X.; Song, Q.; Boltasseva, A.; Han, J.; Shalaev, V.M.; et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat. Commun. 2021, 12, 5560. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, C.; Wei, Y.; Lin, Y.; Han, Y.; Deng, Y. High-Efficiency Achromatic Metalens Topologically Optimized in the Visible. Nanomaterials 2023, 13, 890. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, M.; Pu, M.; Zhang, F.; Sang, D.; Guo, Y.; Li, X.; Ma, X.; Luo, X. Designing high-efficiency extended depth-of-focus metalens via topology-shape optimization. Nanophotonics 2022, 11, 2967–2975. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, C.; Yao, L.; Zhang, L.; Fu, Y.; Lin, Y.; Han, Y.; Deng, Y. High-efficiency achromatic metalens in long-wavelength infrared composed of topologically optimized building blocks. Opt. Mater. 2024, 151, 115314. [Google Scholar] [CrossRef]
- Jiang, Q.; Liu, J.; Li, J.; Jing, X.; Li, X.; Huang, L.; Wang, Y. Multiwavelength Achromatic Metalens in Visible by Inverse Design. Adv. Opt. Mater. 2023, 11, 2300077. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, S.; Wen, Y.; Sun, J.; Zhou, J. High Efficiency Visible Achromatic Metalens Design via Deep Learning. Adv. Opt. Mater. 2023, 11, 2300394. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, M.; Zhang, L.; Zhang, R.; Cheng, H.; Shen, C.; Wei, S. Broadband achromatic metalens design based on predictive neural network and particle swarm optimization-genetic algorithm. New J. Phys. 2023, 25, 103040. [Google Scholar] [CrossRef]
- Hwang, S.R.; Hwang, C.B. Deep learning neural network designed large dimensional neutron focusing metalens. Eur. Phys. J. Plus 2025, 140, 11. [Google Scholar] [CrossRef]
- Wu, H.; Yi, Y.; Zhang, N.; Zhang, Y.; Wu, H.; Yi, Z.; Liu, S.; Yi, Y.; Tang, B.; Sun, T. Inverse design broadband achromatic metasurfaces for longwave infrared. Opt. Mater. 2024, 148, 114923. [Google Scholar] [CrossRef]
- Xu, S.; Kang, P.; Chen, J.; Hu, Z.; Chang, W.; Huang, F. Inverse design broadband achromatic and polarizations-insensitive metalens in mid-infrared. Opt. Commun. 2025, 579, 131586. [Google Scholar] [CrossRef]
- Hongli, Y.; Zhaofeng, C.; Xiaotong, L. Broadband achromatic and wide field of view metalens-doublet by inverse design. Opt. Express 2024, 32, 15315. [Google Scholar] [CrossRef]
- Che, X.; Yu, Y.; Gao, Z.; Yuan, Q. A broadband achromatic Alvarez metalens. Opt. Laser Technol. 2023, 159, 108985. [Google Scholar] [CrossRef]
- Yao, Z.; Chen, W.; Chen, Y. Double-layer metalens with a reduced meta-atom aspect ratio. Opt. Lett. 2021, 46, 1510–1513. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Zhang, J.; Wu, Q.; Martins, A.; Sun, Q.; Liu, Z.; Long, Y.; Martins, E.R.; Li, J.; Liang, H. RGB achromatic metalens doublet for digital imaging. Nano Lett. 2022, 22, 3969–3975. [Google Scholar] [CrossRef]
- Pan, C.-F.; Wang, H.; Wang, H.; Nair, P.; Ruan, Q.; Wredh, S.; Ke, Y.; Chan, J.Y.E.; Zhang, W.; Yang, J.K.W. 3D-printed multilayer structures for high–numerical aperture achromatic metalenses. Sci. Adv. 2023, 9, eadj9262. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, S.; Xu, L.; Cao, Y.; Tao, Y.; Chen, Y.; Zhang, Z.; Chen, C.; Li, J.; Hu, Y.; et al. A holographic broadband achromatic metalens. Laser Photonics Rev. 2023, 18, 2300880. [Google Scholar] [CrossRef]
- Xiao, X.-J.; Zhu, S.-N.; Li, T. Performance analysis of the multiwavelength achromatic metalens. Chin. Opt. 2021, 14, 823–830. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Radlak, K.; Malinski, L.; Smolka, B. Deep Learning Based Switching Filter for Impulsive Noise Removal in Color Images. Sensors 2020, 20, 2782. [Google Scholar] [CrossRef]
- Dong, Y.; Zheng, B.; Li, H.; Tang, H.; Zhao, H.; Huang, Y.; An, S.; Zhang, H. Achromatic single metalens imaging via deep neural network. ACS Photonics 2024, 11, 1645–1656. [Google Scholar] [CrossRef]
- Cheng, W.; Wang, Y.; Zhang, Y.; Chen, H.; Lu, Z.; Zhao, F.; Wang, Y.; Wu, J.; Yang, J. Broadband achromatic imaging of a metalens with optoelectronic computing fusion. Nano Lett. 2024, 24, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, Y.; Huang, C.; Zhou, Z.-W.; Li, M.; Zhang, Z.; Chen, J. Deep-learning enhanced high-quality imaging in metalens-integrated camera. Opt. Lett. 2024, 49, 2853–2856. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Huang, H.; Zhang, X.; Ye, D.; Li, Y.; Wang, L.; Ma, Y.; Li, Y. Neural-Network-Enhanced Metalens Camera for High-Definition, Dynamic Imaging in the Long-Wave Infrared Spectrum. ACS Photonics 2025, 12, 140–151. [Google Scholar] [CrossRef]
- Chung, H.; Zhang, F.; Li, H.; Miller, O.D.; Smith, H.I. Inverse design of high-NA metalens for maskless lithography. Nanophotonics 2023, 12, 2371–2381. [Google Scholar] [CrossRef]
- Kanwal, S.; Wen, J.; Yu, B.; Chen, X.; Kumar, D.; Kang, Y.; Bai, C.; Ubaid, S.; Zhang, D. Polarization insensitive, broadband, near diffraction-limited metalens in ultraviolet region. Nanomaterials 2020, 10, 1439. [Google Scholar] [CrossRef]
- Zhang, Q.; Dong, F.; Li, H.X.; Wang, Z.X.; Liang, G.F.; Zhang, Z.H.; Wen, Z.Q.; Shang, Z.G.; Chen, G.; Dai, L.; et al. High-Numerical-Aperture Dielectric Metalens for Super-Resolution Focusing of Oblique Incident Light. Adv. Opt. Mater. 2020, 8, 1901885. [Google Scholar] [CrossRef]
- Gao, X.; Liu, Y.; Chen, H.; Lin, Y.-S.; Chen, X. All-dielectric bifocal metalens with diffraction-limited focusing and polarization-dependent characteristics. Int. J. Mech. Sci. 2025, 286, 109916. [Google Scholar] [CrossRef]
- Li, Y.; Shang, Z.; Li, Z.; Wu, S.; Dang, S.; Xia, L.; Zhou, Y.; Wen, Z.; Zhang, Z.; Xiang, J.; et al. Water-immersion metalens for generating superoscillation non-diffracting beams. Opt. Laser Technol. 2025, 184, 112492. [Google Scholar] [CrossRef]
- Dai, X.; Dong, F.; Zhang, K.; Liao, D.; Li, S.; Shang, Z.; Zhou, Y.; Liang, G.; Zhang, Z.; Wen, Z.; et al. Holographic super-resolution metalens for achromatic sub-wavelength focusing. ACS Photonics 2021, 8, 1439–1447. [Google Scholar] [CrossRef]
- Lin, P.; Chen, W.T.; Yousef, K.M.A.; Marchioni, J.; Zhu, A.; Capasso, F.; Cheng, J.-X. Coherent Raman scattering imaging with a near-infrared achromatic metalens. APL Photonics 2021, 6, 096107. [Google Scholar] [CrossRef] [PubMed]
- Barulin, A.; Barulina, E.; Oh, D.K.; Jo, Y.; Park, H.; Park, S.; Kye, H.; Kim, J.; Yoo, J.; Kim, J.; et al. Axially multifocal metalens for 3D volumetric photoacoustic imaging of neuromelanin in live brain organoid. Sci. Adv. 2025, 11, eadr0654. [Google Scholar] [CrossRef] [PubMed]
- Moghaddasi, M.; Perez Coca, E.; Ye, D.; Flores, D.; Wu, X.; Jalal, A.; Ren, Z.; Abrinaei, F.; Hu, B. Wide FOV metalens for near-infrared capsule endoscopy: Advancing compact medical imaging. Nanophotonics 2024, 13, 4417–4428. [Google Scholar] [CrossRef] [PubMed]
- Shalaginov, M.Y.; An, S.; Yang, F.; Su, P.; Lyzwa, D.; Agarwal, A.M.; Zhang, H.; Hu, J.; Gu, T. Single-Element Diffraction-Limited Fisheye Metalens. Nano Lett. 2020, 20, 7429–7437. [Google Scholar] [CrossRef]
- Li, S.; Zhou, W.; Li, Y.; Lu, Z.; Zhao, F.; He, X.; Jiang, X.; Du, T.; Zhang, Z.; Deng, Y.; et al. Collision of high-resolution wide FOV metalens cameras and vision tasks. Nanophotonics 2025, 14, 315–326. [Google Scholar] [CrossRef]
- Engelberg, J.; Zhou, C.; Mazurski, N.; Bar-David, J.; Kristensen, A.; Levy, U. Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications. Nanophotonics 2020, 9, 361–370. [Google Scholar] [CrossRef]
- Cao, G.; Wang, S.; Liu, W.; Zhang, H.; Han, J.; Xu, X.; Liu, J.; Zhao, W.; Li, H.; Lin, H.; et al. Two hundred nanometer thin multifocal graphene oxide metalens for varying magnification broadband imaging. ACS Nano. 2024, 18, 35550–35558. [Google Scholar] [CrossRef]
- Barulin, A.; Kim, Y.; Oh, D.K.; Jang, J.; Park, H.; Rho, J.; Kim, I. Dual-wavelength metalens enables Epi-fluorescence detection from single molecules. Nat. Commun. 2024, 15, 26. [Google Scholar] [CrossRef]
- Shanker, A.; Fröch, J.E.; Mukherjee, S.; Zhelyeznyakov, M.; Brunton, S.L.; Seibel, E.J.; Majumdar, A. Quantitative phase imaging endoscopy with a metalens. Light Sci. Appl. 2024, 13, 305. [Google Scholar] [CrossRef]
- Chen, J.; Huang, S.-X.; Chan, K.F.; Wu, G.-B.; Chan, C.H. 3D-printed aberration-free terahertz metalens for ultra-broadband achromatic super-resolution wide-angle imaging with high numerical aperture. Nat. Commun. 2025, 16, 363. [Google Scholar] [CrossRef]
- Park, J.-S.; Lim, S.W.D.; Amirzhan, A.; Kang, H.; Karrfalt, K.; Kim, D.; Leger, J.; Urbas, A.; Ossiander, M.; Li, Z.; et al. All-glass 100 mm diameter visible metalens for imaging the cosmos. ACS Nano 2024, 18, 3187–3198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chang, S.; Chen, X.; Ding, Y.; Rahman, M.T.; Duan, Y.; Stephen, M.; Ni, X. High-Efficiency, 80 mm Aperture Metalens Telescope. Nano Lett. 2023, 23, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, S.; Liang, H.; Ren, X.; Luo, L.; Ling, Y.; Liu, S.; Su, Y.; Wu, S.-T. Ultracompact multifunctional metalens visor for augmented reality displays. PhotoniX 2022, 3, 29. [Google Scholar] [CrossRef]
- So, S.; Kim, J.; Badloe, T.; Lee, C.; Yang, Y.; Kang, H.; Rho, J. Multicolor and 3D Holography Generated by Inverse-Designed Single-Cell Metasurfaces. Adv. Mater. 2023, 35, 2208520. [Google Scholar] [CrossRef]
- Yin, Y.; Jiang, Q.; Wang, H.; Liu, J.; Xie, Y.; Wang, Q.; Wang, Y.; Huang, L. Multi-Dimensional Multiplexed Metasurface Holography by Inverse Design. Adv. Mater. 2024, 36, 2312303. [Google Scholar] [CrossRef]
- Sun, S.; Li, J.; Li, X.; Zhao, X.; Li, K.; Chen, L. Dynamic 3D metasurface holography via cascaded polymer dispersed liquid crystal. Microsyst. Nanoeng. 2024, 10, 203. [Google Scholar] [CrossRef]
- Bosch, M.; Shcherbakov, M.; Won, K.; Lee, H.-S.; Kim, Y.; Shvets, G. Voltage-tunable multifunctional zoom imaging metalenses. ACS Photonics 2025, 12, 728–736. [Google Scholar] [CrossRef]
- Wang, C.; Yu, Z.; Zhang, Q.; Sun, Y.; Tao, C.; Wu, F.; Zheng, Z. Metalens eyepiece for 3D holographic near-eye display. Nanomaterials 2021, 11, 1920. [Google Scholar] [CrossRef]
- Fan, Z.-B.; Cheng, Y.-F.; Chen, Z.-M.; Liu, X.; Lu, W.-L.; Li, S.-H.; Jiang, S.-J.; Qin, Z.; Dong, J.-W. Integral imaging near-eye 3D display using a nanoimprint metalens array. eLight 2024, 4, 3. [Google Scholar] [CrossRef]
- Dirdal, C.A.; Milenko, K.; Summanwar, A.; Dullo, F.T.; Thrane, P.C.V.; Rasoga, O.; Avram, A.M.; Dinescu, A.; Baracu, A.M. UV-Nanoimprint and Deep Reactive Ion Etching of High Efficiency Silicon Metalenses: High Throughput at Low Cost with Excellent Resolution and Repeatability. Nanomaterials 2023, 13, 436. [Google Scholar] [CrossRef]
- Kim, J.; Seong, J.; Kim, W.; Lee, G.-Y.; Kim, S.; Kim, H.; Moon, S.-W.; Oh, D.K.; Yang, Y.; Park, J.; et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible. Nat. Mater. 2023, 22, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Javed, I.; Kim, J.; Naveed, M.A.; Oh, D.K.; Jeon, D.; Kim, I.; Zubair, M.; Massoud, Y.; Mehmood, M.Q.; Rho, J. Broad-band polarization-insensitive metasurface holography with a single-phase map. ACS Appl. Mater. Interfaces 2022, 14, 36019–36026. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Wang, Y.; Wei, Y.; Hu, T.; Xiao, S.; He, G.; Zhao, M.; Xia, J.; Yang, Z. Optical multiparameter detection system based on a broadband achromatic metalens array. Adv. Opt. Mater. 2021, 9, 2100772. [Google Scholar] [CrossRef]
- Qiu, X.; Zhang, J.; Fan, Y.; Zhou, J.; Chen, L.; Tsai, D.P. Metasurface enabled high-order differentiator. Nat. Commun. 2025, 16, 2437. [Google Scholar] [CrossRef]
- Du, X.; Shen, W.; Li, J.; Chu, Y.; Sun, J.; Wang, J.; Ji, J.; Chen, C.; Zhu, S.; Li, T. Full-color quasi-achromatic imaging with a dual-functional metasurface. Nano Lett. 2025, 25, 8143–8150. [Google Scholar] [CrossRef]
Material | Wavelength | NA | Fabrication | Focusing Efficiency | Ref. |
---|---|---|---|---|---|
Si | 1000 nm–1700 nm | 0.15 | Not mentioned | 64% | [1] |
Si | 3500 nm–4750 nm | 0.45 | EBL | 45% (4250 nm) | [40] |
TiO2 | 490 nm–550 nm | 0.20 | Electron beam deposition. | Not mentioned | [9] |
GaN | 400 nm–660 nm | 0.15 | Mask transfer and etching process | 40% | [41] |
SiN | 400 nm–700 nm | 0.27 | EBL | 50% | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Li, L.; Zhou, J. The Principle and Application of Achromatic Metalens. Micromachines 2025, 16, 660. https://doi.org/10.3390/mi16060660
Liu R, Li L, Zhou J. The Principle and Application of Achromatic Metalens. Micromachines. 2025; 16(6):660. https://doi.org/10.3390/mi16060660
Chicago/Turabian StyleLiu, Runsheng, Lihua Li, and Jian Zhou. 2025. "The Principle and Application of Achromatic Metalens" Micromachines 16, no. 6: 660. https://doi.org/10.3390/mi16060660
APA StyleLiu, R., Li, L., & Zhou, J. (2025). The Principle and Application of Achromatic Metalens. Micromachines, 16(6), 660. https://doi.org/10.3390/mi16060660