Development of a Fluorescent Rapid Test Sensing System for Influenza Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fluorescence Strip
2.2. Hardware Architecture of the Detection Reader
2.3. Image Processing
2.4. Quantitative Data Calculation (T/C Ratio)
3. Results and Discussion
3.1. Fluorescence Rapid Test Detection Reader
3.2. UV LED Light Intensity Testing
3.3. Influenza A Concentration Analysis
3.4. Influenza A Low-Concentration Analysis
3.5. Influenza B Low-Concentration Analysis
3.6. Comparison with Commercial Detection Systems
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Javanian, M.; Barary, M.; Ghebrehewet, S.; Koppolu, V.; Vasigala, V.; Vasigala, V. A brief review of influenza virus infection. J. Med. Virol. 2021, 93, 4638–4646. [Google Scholar] [CrossRef] [PubMed]
- Shu, B.; Kirby, M.K.; Davis, W.G.; Warnes, C.; Liddell, J.; Liu, J.; Wu, K.; Hassell, N.; Benitez, A.J.; Wilson, M.M.; et al. Multiplex real-time reverse transcription PCR for influenza A virus, influenza B virus, and severe acute respiratory syndrome coronavirus 2. Emerg. Infect. Dis. 2021, 27, 1821–1830. [Google Scholar] [CrossRef] [PubMed]
- Bruning, A.H.; Leeflang, M.M.; Vos, J.M.; Spijker, R.; de Jong, M.D.; Wolthers, K.C.; Pajkrt, D. Rapid Tests for Influenza, Respiratory Syncytial Virus, and Other Respiratory Viruses: A Systematic Review and Meta-analysis. Clin. Infect. Dis. 2017, 65, 1026–1032. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.X.; Zhu, L.B.; Wu, S.T.; Ding, S.N. Rapid and Sensitive Detection of Influenza B Virus Employing Nanocomposite Spheres Based on Ag-Doped ZnIn2S4 Quantum Dots. Chemosensors 2024, 12, 68. [Google Scholar] [CrossRef]
- Sakurai, A.; Takayama, K.; Nomura, N.; Kajiwara, N.; Okamatsu, M.; Yamamoto, N.; Tamura, T.; Yamada, J.; Hashimoto, M.; Sakoda, Y.; et al. Fluorescent Immunochromatography for Rapid and Sensitive Typing of Seasonal Influenza Viruses. PLoS ONE 2015, 10, e0116715. [Google Scholar] [CrossRef]
- Gong, X.; Cai, J.; Zhang, B.; Zhao, Q.; Piao, J.; Peng, W.; Gao, W.; Zhou, D.; Zhao, M.; Chang, J. A review of fluorescent signal-based lateral flow immunochromatographic strips. J. Mater. Chem. B 2017, 5, 5079–5091. [Google Scholar] [CrossRef]
- Sela-Culang, I.; Kunik, V.; Ofran, Y. The structural basis of antibody-antigen recognition. Front. Immunol. 2013, 4, 302. [Google Scholar] [CrossRef]
- Thione, D. Insights into Antigen-Antibody Interactions: Mechanisms and Applications. J. Immunobiol. 2024, 9, 236. [Google Scholar]
- Walsh, J.H.; Yalow, R.; Berson, S.A. Detection of Australia antigen and antibody by means of radioimmunoassay techniques. J. Infect. Dis. 1970, 121, 550–554. [Google Scholar] [CrossRef]
- Qi, W.A.N.G.; Hou, M.L.; Liu, L.P.; Jing, M.A.; Zhang, X.G.; Zhou, Z.X.; Cao, Y.X. A new method for ultra-sensitive P24 antigen assay based on near-infrared fluorescent microsphere immunochromatography. Biomed. Environ. Sci. 2020, 33, 174–182. [Google Scholar]
- Yang, X.; Cheng, X.; Wei, H.; Tu, Z.; Rong, Z.; Wang, C.; Wang, S. Fluorescence-enhanced dual signal lateral flow immunoassay for flexible and ultrasensitive detection of monkeypox virus. J. Nanobiotechnol. 2023, 21, 450. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, N.; Hou, Y.; Dong, H.; Liang, W.; Li, X.; Yuan, Y. A highly sensitive ratiometric fluorescence immunoassay based on bioorthogonal nanozymes. Chem. Commun. 2024, 60, 3978–3981. [Google Scholar] [CrossRef] [PubMed]
- Alcon, S.; Talarmin, A.; Debruyne, M.; Falconar, A.; Deubel, V.; Flamand, M. Enzyme-Linked Immunosorbent Assay Specific to Dengue Virus Type 1 Nonstructural Protein NS1 Reveals Circulation of the Antigen in the Blood during the Acute Phase of Disease in Patients Experiencing Primary or Secondary Infections. J. Clin. Microbiol. 2002, 40, 376–381. [Google Scholar] [CrossRef]
- Guo, M.; Du, S.; Lai, L.; Wu, W.; Huang, X.; Li, A.; Li, H.; Li, C.; Wang, Q.; Sun, L.; et al. Development and evaluation of recombinant E2 protein based IgM capture enzyme-linked immunosorbent assay (ELISA) and double antigen sandwich ELISA for detection of antibodies to Chikungunya virus. PLoS Neglected Trop. Dis. 2022, 16, e0010829. [Google Scholar] [CrossRef]
- Chahed Bel-Ochi, N.; Bouratbine, A.; Mousli, M. Enzyme-Linked Immunosorbent Assay Using Recombinant SAG1 Antigen to Detect Toxoplasma gondii-Specific Immunoglobulin G Antibodies in Human Sera and Saliva. Clin. Vaccine Immunol. 2013, 20, 468–473. [Google Scholar] [CrossRef]
- Thongpradit, S.; Prasongtanakij, S.; Srisala, S.; Chanprasertyothin, S.; Pasomsub, E.; Ongphiphadhanakul, B. The Detection of SARS-CoV2 Antigen in Wastewater Using an Automated Chemiluminescence Enzyme Immunoassay. Int. J. Environ. Res. Public Health 2022, 19, 7783. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, N.; Yu, F.; Yu, S.; Liu, L.; Tian, Y.; Wu, Y. Simultaneous detection of carcinoembryonic antigen and neuron-specific enolase in human serum based on time-resolved chemiluminescence immunoassay. Analyst 2019, 144, 4813–4819. [Google Scholar] [CrossRef]
- Yeh, C.H.; Su, K.F.; Lin, Y.C. Development of an impedimetric immunobiosensor for measurement of carcinoembryonic antigen. Sens. Actuators A Phys. 2016, 241, 203–211. [Google Scholar] [CrossRef]
- Liu, Y.; Zhan, L.; Qin, Z.; Sackrison, J.; Bischof, J.C. Ultrasensitive and Highly Specific Lateral Flow Assays for Point-of-Care Diagnosis. ACS Nano 2021, 15, 3593–3611. [Google Scholar] [CrossRef]
- Onnerfjord, P.; Eremin, S.; Emneus, J.; Marko-Varga, G. Fluorescence polarisation for immunoreagent characterization. J. Immunol. Methods 1998, 213, 31–39. [Google Scholar] [CrossRef]
- McNaught, R.W.; France, J.T. Studies of the biochemical basis of steroid sulphatase deficiency: Preliminary evidence suggesting a defect in membrane-enzyme structure. J. Steroid Biochem. 1980, 13, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Nilghaz, A.; Bagherbaigi, S.; Lam, C.L.; Mousavi, S.M.; Cόrcoles, E.P.; Wicaksono, D.H. Multiple semi-quantitative colorimetric assays in compact embeddable microfluidic cloth-based analytical device (μCAD) for effective point-of-care diagnostic. Microfluid. Nanofluid. 2015, 19, 317–333. [Google Scholar] [CrossRef]
- Harrison, G.; Haffey, P.; Golub, E.E. A nanogram-level colloidal gold single reagent quantitative protein assay. Anal. Biochem. 2008, 380, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Chaimayo, C.; Kaewnaphan, B.; Tanlieng, N.; Athipanyasilp, N.; Sirijatuphat, R.; Chayakulkeeree, M.; Angkasekwinai, N.; Sutthent, R.; Puangpunngam, N.; Tharmviboonsri, T.; et al. Rapid SARS-CoV-2 antigen detection assay in comparison with real-time RT-PCR assay for laboratory diagnosis of COVID-19 in Thailand. Virol. J. 2020, 17, 177. [Google Scholar] [CrossRef]
- Gans, J.S.; Goldfarb, A.; Agrawal, A.K.; Sennik, S.; Stein, J.; Rosella, L. False-positive results in rapid antigen tests for SARS-CoV-2. JAMA 2022, 327, 485–486. [Google Scholar] [CrossRef]
- Shen, X.W.; Wu, H.P.; Dong, L. Recent advances of photoacoustic imaging technology in biomedicine [Invited]. Acta Photonica Sin. 2023, 52, 0352105. [Google Scholar]
- Rong, J.; Liu, Y. Advances in medical imaging techniques. BMC Methods 2024, 1, 10. [Google Scholar] [CrossRef]
- Manmana, Y.; Macka, M.; Nuchtavorn, N. Distance-based paper microfluidic devices for rapid visual quantification of heavy metals in herbal supplements and cosmetics. RSC Adv. 2024, 14, 36142–36151. [Google Scholar] [CrossRef]
- Pandey, S.K.; Mohanta, G.C.; Kumar, V.; Gupta, K. Diagnostic tools for rapid screening and detection of SARS-CoV-2 infection. Vaccines 2022, 10, 1200. [Google Scholar] [CrossRef]
- Das, S.; Shrivas, A.; Soni, P.; Gupta, A.K.; Singh, S.; Bhattacharjee, M. Quantitative Image Sensing of Tuberculosis Biomarkers Using Rapid Diagnostic Test Kit. IEEE Sens. J. 2025, 4, 7242–7249. [Google Scholar] [CrossRef]
- Feng, T.; Yang, J.; Wang, Y.; Hu, T.; Yan, L.; Le, Y.; Liu, L. A novel fluorescent probe for rapid and selective detection of fluoride ions in living cells. Anal. Methods 2025, 17, 939–943. [Google Scholar] [CrossRef] [PubMed]
- Budri, M.B.; Gudasi, K.B.; Vadavi, R.S.; Patil, M.K.; Kumbar, V.M.; Inamdar, S.R. Tri-armed Schiff base fluorescent sensor for the rapid recognition of Zn (ii): Application in live cell imaging, test strips and TLC. Anal. Methods 2024, 16, 4743–4754. [Google Scholar]
- Thuy Tien, T.T.; Park, H.; Tuong, H.T.; Yu, S.T.; Choi, D.Y.; Yeo, S.J. Development of a rapid fluorescent immunochromatographic test to detect respiratory syncytial virus. Int. J. Mol. Sci. 2018, 19, 3013. [Google Scholar] [CrossRef]
- Liu, X.; Du, K.; Lin, S.; Wang, Y. Deep learning on lateral flow immunoassay for the analysis of detection data. Front. Comput. Neurosci. 2023, 17, 1091180. [Google Scholar] [CrossRef]
- Natarajan, S.; DeRosa, M.C.; Shah, M.I.; Jayaraj, J. Development and evaluation of a quantitative fluorescent lateral flow immunoassay for cystatin-C, a renal dysfunction biomarker. Sensors 2021, 21, 3178. [Google Scholar] [CrossRef]
- Shi, S.J.; Ji, M.Q.; Huang, R.F.; Fan, Z.Y. Highly sensitive time-resolved fluorescent microspheres lateral flow immunoassay for the quantitative detection of triadimefon and its metabolite residues in fruits and vegetables. Microchim. Acta 2024, 19, 670. [Google Scholar] [CrossRef]
- Jiao, X.; Peng, T.; Liang, Z.; Hu, Y.; Meng, B.; Zhao, Y.; Xie, J.; Gong, X.; Jiang, Y.; Fang, X.; et al. Lateral flow immunoassay based on time-resolved fluorescence microspheres for rapid and quantitative screening CA199 in human serum. Int. J. Mol. Sci. 2022, 23, 9991. [Google Scholar] [CrossRef]
- Wang, K.T.; Lin, C.P.; Fang, Y.Y.; Kao, M.H.; Shih, D.Y.C.; Lo, C.F.; Wang, D.Y. Sensitivity and specificity of in vitro diagnostic device used for influenza rapid test in Taiwan. J. Food Drug Anal. 2014, 22, 279–284. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, W.-C.; Wu, Y.-L.; Lin, Z.-J.; Pan, W.-F.; Lin, Y.-C. Development of a Fluorescent Rapid Test Sensing System for Influenza Virus. Micromachines 2025, 16, 635. https://doi.org/10.3390/mi16060635
Weng W-C, Wu Y-L, Lin Z-J, Pan W-F, Lin Y-C. Development of a Fluorescent Rapid Test Sensing System for Influenza Virus. Micromachines. 2025; 16(6):635. https://doi.org/10.3390/mi16060635
Chicago/Turabian StyleWeng, Wei-Chien, Yu-Lin Wu, Zia-Jia Lin, Wen-Fung Pan, and Yu-Cheng Lin. 2025. "Development of a Fluorescent Rapid Test Sensing System for Influenza Virus" Micromachines 16, no. 6: 635. https://doi.org/10.3390/mi16060635
APA StyleWeng, W.-C., Wu, Y.-L., Lin, Z.-J., Pan, W.-F., & Lin, Y.-C. (2025). Development of a Fluorescent Rapid Test Sensing System for Influenza Virus. Micromachines, 16(6), 635. https://doi.org/10.3390/mi16060635