Wireless Optogenetic Microsystems Accelerate Artificial Intelligence–Neuroscience Coevolution Through Embedded Closed-Loop System
Abstract
:1. Introduction
2. AI Empowering Neuroscience, Wireless Optogenetics, and Beyond
3. Discoveries Looping Back, Neuroscience Inspiring Better AI
4. Discussion and Future Outlook
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yashchenko, V. From McCulloch to GPT-4: Stages of development of artificial intelligence. Artif. Intell. 2024, 1, 31–44. [Google Scholar]
- Chakraverty, S.; Sahoo, D.M.; Mahato, N.R.; Chakraverty, S.; Sahoo, D.M.; Mahato, N.R. McCulloch–Pitts neural network model. In Concepts soft Comput. Fuzzy ANN with Program; Springer: Singapore, 2019; pp. 167–173. [Google Scholar]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386. [Google Scholar] [CrossRef] [PubMed]
- Kuriscak, E.; Marsalek, P.; Stroffek, J.; Toth, P.G. Biological context of Hebb learning in artificial neural networks, a review. Neurocomputing 2015, 152, 27–35. [Google Scholar] [CrossRef]
- Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; Wierstra, D. Weight uncertainty in neural network. In Proceedings of the International Conference on Machine Learning, Lille, France, 7–9 July 2015; PMLR: New York, NY, USA, 2015; pp. 1613–1622. [Google Scholar]
- Salimans, T.; Kingma, D.P. Weight normalization: A simple reparameterization to accelerate training of deep neural networks. In Proceedings of the 30th International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 5–10 December 2016; Volume 29. [Google Scholar]
- O’shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458. [Google Scholar]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Medsker, L.R.; Jain, L. Recurrent neural networks. Des. Appl. 2001, 5, 2. [Google Scholar]
- Rogalla, M.M.; Seibert, A.; Sleeboom, J.M.; Hildebrandt, K.J. Differential optogenetic activation of the auditory midbrain in freely moving behaving mice. Front. Syst. Neurosci. 2023, 17, 1222176. [Google Scholar] [CrossRef]
- Li, J.; Zaikin, A.; Zhang, X.; Chen, S. Editorial: Closed-loop iterations between neuroscience and artificial intelligence. Front. Syst. Neurosci. 2022, 16, 1002095. [Google Scholar] [CrossRef]
- Orzan, F.; Iancu, Ş.D.; Dioşan, L.; Bálint, Z. Textural analysis and artificial intelligence as decision support tools in the diagnosis of multiple sclerosis—A systematic review. Front. Neurosci. 2025, 18, 1457420. [Google Scholar] [CrossRef]
- Song, S.; Li, T.; Lin, W.; Liu, R.; Zhang, Y. Application of artificial intelligence in Alzheimer’s disease: A bibliometric analysis. Front. Neurosci. 2025, 19, 1511350. [Google Scholar] [CrossRef]
- Haenlein, M.; Kaplan, A. A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. Calif. Manage. Rev. 2019, 61, 5–14. [Google Scholar] [CrossRef]
- Adap, V.R.K. NEURO-AI CONVERGENCE: BRIDGING THE GAP BETWEEN NEUROSCIENCE AND ARTIFICIAL INTELLIGENCE. Int. J. Comput. Eng. Technol. 2024, 15, 938–946. [Google Scholar]
- Kim, W.S.; Liu, J.; Li, Q.; Hong, S.; Qi, K.; Cherukuri, R.; Yoon, B.-J.; Moscarello, J.; Choe, Y.; Maren, S. AI-Driven Battery-Free Dual-Channel Wireless Optogenetics for High-Throughput Automation of Behavioral Analysis. Cell Press Sneak Peek 2022. [Google Scholar] [CrossRef]
- Balasubramaniam, S.; Wirdatmadja, S.A.; Barros, M.T.; Koucheryavy, Y.; Stachowiak, M.; Jornet, J.M. Wireless communications for optogenetics-based brain stimulation: Present technology and future challenges. IEEE Commun. Mag. 2018, 56, 218–224. [Google Scholar] [CrossRef]
- Shin, G.; Gomez, A.M.; Al-Hasani, R.; Jeong, Y.R.; Kim, J.; Xie, Z.; Banks, A.; Lee, S.M.; Han, S.Y.; Yoo, C.J.; et al. Flexible Near-Field Wireless Optoelectronics as Subdermal Implants for Broad Applications in Optogenetics. Neuron 2017, 93, 509–521.e3. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wu, M.; Vázquez-Guardado, A.; Wegener, A.J.; Grajales-Reyes, J.G.; Deng, Y.; Wang, T.; Avila, R.; Moreno, J.A.; Minkowicz, S.; et al. Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nat. Neurosci. 2021, 24, 1035–1045. [Google Scholar] [CrossRef]
- Kim, W.S.; Jeong, M.; Hong, S.; Lim, B.; Park, S.I. Fully implantable low-power high frequency range optoelectronic devices for dual-channel modulation in the brain. Sensors 2020, 20, 3639. [Google Scholar] [CrossRef]
- Xu, S.; Momin, M.; Ahmed, S.; Hossain, A.; Veeramuthu, L.; Pandiyan, A.; Kuo, C.-C.; Zhou, T. Illuminating the Brain: Advances and Perspectives in Optoelectronics for Neural Activity Monitoring and Modulation. Adv. Mater. 2023, 35, 2303267. [Google Scholar] [CrossRef]
- Pandiyan, A.; Vengudusamy, R.; Veeramuthu, L.; Muthuraman, A.; Wang, Y.-C.; Lee, H.; Zhou, T.; Kao, C.R.; Kuo, C.-C. Synergistic effects of size-confined mxene nanosheets in self-powered sustainable smart textiles for environmental remediation. Nano Energy 2025, 133, 110426. [Google Scholar] [CrossRef]
- Veeramuthu, L.; Weng, R.-J.; Chiang, W.-H.; Pandiyan, A.; Liu, F.-J.; Liang, F.-C.; Kumar, G.R.; Hsu, H.-Y.; Chen, Y.-C.; Lin, W.-Y.; et al. Bio-inspired sustainable electrospun quantum nanostructures for high quality factor enabled face masks and self-powered intelligent theranostics. Chem. Eng. J. 2024, 502, 157752. [Google Scholar] [CrossRef]
- Pandiyan, A.; Veeramuthu, L.; Yan, Z.-L.; Lin, Y.-C.; Tsai, C.-H.; Chang, S.-T.; Chiang, W.-H.; Xu, S.; Zhou, T.; Kuo, C.-C. A comprehensive review on perovskite and its functional composites in smart textiles: Progress, challenges, opportunities, and future directions. Prog. Mater. Sci. 2023, 140, 101206. [Google Scholar] [CrossRef]
- Glaser, J.I.; Benjamin, A.S.; Chowdhury, R.H.; Perich, M.G.; Miller, L.E.; Kording, K.P. Machine learning for neural decoding. eNeuro 2020, 7. [Google Scholar] [CrossRef]
- Dos Santos Melicio, B.C.; Xiang, L.; Dillon, E.; Soorya, L.; Chetouani, M.; Sarkany, A.; Kun, P.; Fenech, K.; Lorincz, A. Composite AI for behavior analysis in social interactions. In Proceedings of the Companion Publication of the 25th International Conference on Multimodal Interaction, Paris, France, 9–13 October 2023; pp. 389–397. [Google Scholar]
- Samayamantri, L.S.; Singhal, S.; Krishnamurthy, O.; Regin, R. AI-Driven Multimodal Approaches to Human Behavior Analysis. In Advancing Intelligent Networks Through Distributed Optimization; IGI Global: Hershey, PA, USA, 2024; pp. 485–506. [Google Scholar]
- Di Tecco, A.; Pistolesi, F.; Lazzerini, B. Elicitation of anxiety without time pressure and its detection using physiological signals and artificial intelligence: A proof of concept. IEEE Access 2024, 12, 22376–22393. [Google Scholar] [CrossRef]
- Grosenick, L.; Marshel, J.H.; Deisseroth, K. Closed-loop and activity-guided optogenetic control. Neuron 2015, 86, 106–139. [Google Scholar] [CrossRef] [PubMed]
- Mathis, A.; Mamidanna, P.; Cury, K.M.; Abe, T.; Murthy, V.N.; Mathis, M.W.; Bethge, M. DeepLabCut: Markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 2018, 21, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Nath, T.; Mathis, A.; Chen, A.C.; Patel, A.; Bethge, M.; Mathis, M.W. Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nat. Protoc. 2019, 14, 2152–2176. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.S.; Khot, M.I.; Woo, H.-M.; Hong, S.; Baek, D.-H.; Maisey, T.; Daniels, B.; Coletta, P.L.; Yoon, B.-J.; Jayne, D.G.; et al. AI-enabled, implantable, multichannel wireless telemetry for photodynamic therapy. Nat. Commun. 2022, 13, 2178. [Google Scholar] [CrossRef]
- Kim, W.S.; Woo, H.-M.; Khot, M.I.; Hong, S.; Jayne, D.G.; Yoon, B.-J.; Park, S.I. AI-Enabled High-Throughput Wireless Telemetry for Effective Photodynamic Therapy. In Proceedings of the 2021 55th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 31 October–3 November 2021; IEEE: New York, NY, USA, 2021; pp. 811–815. [Google Scholar]
- Fazzari, E.; Carrara, F.; Falchi, F.; Stefanini, C.; Romano, D. Using AI to decode the behavioral responses of an insect to chemical stimuli: Towards machine-animal computational technologies. Int. J. Mach. Learn. Cybern. 2024, 15, 1985–1994. [Google Scholar] [CrossRef]
- Camastra, F.; Vinciarelli, A. Machine Learning for Audio, Image and Video Analysis: Theory and Applications; Springer: London, UK, 2015; ISBN 144716735X. [Google Scholar]
- Zhang, Y.; Kwong, S.; Wang, S. Machine learning based video coding optimizations: A survey. Inf. Sci. 2020, 506, 395–423. [Google Scholar] [CrossRef]
- Gharagozloo, M.; Amrani, A.; Wittingstall, K.; Hamilton-Wright, A.; Gris, D. Machine learning in modeling of mouse behavior. Front. Neurosci. 2021, 15, 700253. [Google Scholar] [CrossRef]
- Livezey, J.A.; Glaser, J.I. Deep learning approaches for neural decoding across architectures and recording modalities. Brief. Bioinform. 2021, 22, 1577–1591. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Shi, J.; Zhang, Y.; Lu, K.-H.; Cao, J.; Liu, Z. Neural Encoding and Decoding with Deep Learning for Dynamic Natural Vision. Cereb. Cortex 2018, 28, 4136–4160. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.S.; Hong, S.; Gamero, M.; Jeevakumar, V.; Smithhart, C.M.; Price, T.J.; Palmiter, R.D.; Campos, C.; Park, S.I. Organ-specific, multimodal, wireless optoelectronics for high-throughput phenotyping of peripheral neural pathways. Nat. Commun. 2021, 12, 157. [Google Scholar] [CrossRef]
- Hong, S.; Kim, W.S.; Han, Y.; Cherukuri, R.; Jung, H.; Campos, C.; Wu, Q.; Park, S.I. Optogenetic Targeting of Mouse Vagal Afferents Using an Organ-specific, Scalable, Wireless Optoelectronic Device. Bio-protocol 2022, 12, e4341. [Google Scholar] [CrossRef] [PubMed]
- Bohm, M.R.; Stone, R.B. Form Follows Form: Fine tuning artificial intelligence methods. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, QC, USA, 15–18 August 2010; Volume 44113, pp. 519–528. [Google Scholar]
- Schöning, J.; Pfisterer, H.-J. Safe and trustful AI for closed-loop control systems. Electronics 2023, 12, 3489. [Google Scholar] [CrossRef]
- Nimri, R.; Phillip, M.; Kovatchev, B. Closed-Loop and Artificial Intelligence–Based Decision Support Systems. Diabetes Technol. Ther. 2023, 25, S-70–S-89. [Google Scholar] [CrossRef]
- Kuo, F.Y.; Sloan, I.H. Lifting the curse of dimensionality. Not. AMS 2005, 52, 1320–1328. [Google Scholar]
- Verleysen, M.; François, D. The curse of dimensionality in data mining and time series prediction. In Proceedings of the 8th International Work-Conference on Artificial Neural Networks, IWANN 2005, Vilanova i la Geltrú, Barcelona, Spain, 8–10 June 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 758–770. [Google Scholar]
- Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins, G.; Rusu, A.A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-Barwinska, A. Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. USA 2017, 114, 3521–3526. [Google Scholar] [CrossRef]
- Ramasesh, V.V.; Lewkowycz, A.; Dyer, E. Effect of scale on catastrophic forgetting in neural networks. In Proceedings of the International Conference on Learning Representations, Vienna, Austria, 3–7 May 2021. [Google Scholar]
- Kemker, R.; McClure, M.; Abitino, A.; Hayes, T.; Kanan, C. Measuring catastrophic forgetting in neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar]
- Zhang, Y.; Li, Y.; Cui, L.; Cai, D.; Liu, L.; Fu, T.; Huang, X.; Zhao, E.; Zhang, Y.; Chen, Y. Siren’s song in the AI ocean: A survey on hallucination in large language models. arXiv 2023, arXiv:2309.01219. [Google Scholar]
- Kolbert, E. The obscene energy demands of AI. The New Yorker, 9 March 2024. [Google Scholar]
- Jin, D.; Ocone, R.; Jiao, K.; Xuan, J. Energy and AI. Energy AI 2020, 1, 100002. [Google Scholar] [CrossRef]
- Nøland, J.K.; Hjelmeland, M.; Korpås, M. Will Energy-Hungry AI create a baseload power demand boom? IEEE Access 2024, 12, 110353–110360. [Google Scholar] [CrossRef]
- Banuelos, C.; Wołoszynowska-Fraser, M.U. GABAergic networks in the prefrontal cortex and working memory. J. Neurosci. 2017, 37, 3989–3991. [Google Scholar] [CrossRef] [PubMed]
- Topolnik, L.; Tamboli, S. The role of inhibitory circuits in hippocampal memory processing. Nat. Rev. Neurosci. 2022, 23, 476–492. [Google Scholar] [CrossRef] [PubMed]
- Alexander, W.H.; Brown, J.W. The role of the anterior cingulate cortex in prediction error and signaling surprise. Top. Cogn. Sci. 2019, 11, 119–135. [Google Scholar] [CrossRef]
- Orr, C.; Hester, R. Error-related anterior cingulate cortex activity and the prediction of conscious error awareness. Front. Hum. Neurosci. 2012, 6, 177. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, S. Wireless Optogenetic Microsystems Accelerate Artificial Intelligence–Neuroscience Coevolution Through Embedded Closed-Loop System. Micromachines 2025, 16, 557. https://doi.org/10.3390/mi16050557
Hong S. Wireless Optogenetic Microsystems Accelerate Artificial Intelligence–Neuroscience Coevolution Through Embedded Closed-Loop System. Micromachines. 2025; 16(5):557. https://doi.org/10.3390/mi16050557
Chicago/Turabian StyleHong, Sungcheol. 2025. "Wireless Optogenetic Microsystems Accelerate Artificial Intelligence–Neuroscience Coevolution Through Embedded Closed-Loop System" Micromachines 16, no. 5: 557. https://doi.org/10.3390/mi16050557
APA StyleHong, S. (2025). Wireless Optogenetic Microsystems Accelerate Artificial Intelligence–Neuroscience Coevolution Through Embedded Closed-Loop System. Micromachines, 16(5), 557. https://doi.org/10.3390/mi16050557