The Influence of Sample Microfabrication and Annealing on the Mechanical Strain–Stress Behavior of Stainless Steels and Corrosion Resistant Aluminum Alloys in Micro-Tensile Tests
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mechanical Strain–Stress Behavior of Miniaturized 1.4310 Samples
3.1.1. Influence of Sample Microfabrication on the Strain–Stress Behavior of 1.4310
3.1.2. Influence Annealing Heat Treatments on the Strain–Stress Behavior of 1.4310
3.2. Influence of Carbon Content and Stacking Fault Energy on the Strain–Stress Behavior
3.2.1. Influence of Carbon Content and Inherent Cold Work: 1.4310 vs. 1.4301
3.2.2. Influence of Stacking Fault Energy: 1.4310 vs. Aluminum Alloys
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ai | Fracture strain (index “i” corresponds to a particular sample geometry) |
bcc | Body-centered cubic |
E | Young’s modulus |
EDS | Energy-dispersive x-ray spectroscopy (chemical microanalysis) |
fcc | Face-centered cubic |
HAZ | Heat-affected zone |
MEMS | Micro-electro-mechanical system |
ReH | Upper yield strength |
Rm | Tensile strength |
Rp0.2 | 0.2% yield strength |
SEM | Scanning electron microscope |
SFE | Stacking fault energy |
References
- Schröder, C.; Volkova, O.; Wendler, M. Influence of strain rate on the tensile properties of metastable austenitic stainless CrNi and CrMnNi spring steels. Mater. Sci. Eng. A 2022, 850, 143507. [Google Scholar] [CrossRef]
- El-Danaf, E. Mechanical properties, microstructure and micro-texture evolution for 1050AA deformed by equal channel angular pressing (ECAP) and post ECAP plane strain compression using two loading schemes. Mater. Des. 2012, 34, 793–807. [Google Scholar] [CrossRef]
- Rohatgi, A.; Vecchio, K.; Gray, G. The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloy: Deformation twinning, work hardening, and dynamic recovery. Metall. Mater. Trans. A 2001, 32, 135–145. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Liao, Y.Y.; Zhu, Y.T. Influence of stacking fault energy on nanostructure under high pressure torsion. Mater. Sci. Eng. A 2005, 410–411, 188–193. [Google Scholar] [CrossRef]
- Jia, N.; Roters, F.; Eisenlohr, P.; Kords, C.; Raabe, D. Orientation dependence of shear banding in face-centered-cubic single crystals. Acta Mater. 2012, 60, 1099–1115. [Google Scholar] [CrossRef]
- Talonen, J.; Hänninen, H. Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Mater. 2007, 55, 6108–6118. [Google Scholar] [CrossRef]
- Kelly, A.; Knowles, K.M. Crystallography and Crystal Defects, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2012; pp. 269–304. [Google Scholar]
- Hertzberg, R.W.; Vinci, R.P.; Hertzberg, J.L. Deformation and Fracture Mechanics of Engineering Materials, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; p. 80. [Google Scholar]
- Murr, L.E. Interfacial Phenomena in Metals and Alloys, 1st ed.; Addison-Wesley Pub. Co.: Reading, MA, USA, 1975; pp. 1–376. [Google Scholar]
- Huang, K.; Logé, R.E. A review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 2016, 111, 548–574. [Google Scholar] [CrossRef]
- Lu, S.; Hu, Q.-M.; Johansson, B.; Vitos, L. Stacking fault energies of Mn, Co and Nb alloyed austenitic stainless steels. Acta Mater. 2011, 59, 5728–5734. [Google Scholar] [CrossRef]
- Lu, J.; Hultman, L.; Holmström, E.; Antonsson, K.H.; Grehk, M.; Li, W.; Vitos, L.; Golpayegani, A. Stacking fault energies in austenitic stainless steels. Acta Mater. 2016, 111, 39–46. [Google Scholar] [CrossRef]
- Qin, B.; Bhadeshia, H.K.D.H. Plastic strain due to twinning in austenitic twip steels. Mater. Sci. Technol. 2008, 24, 969–973. [Google Scholar] [CrossRef]
- Acidur 4310 (1.4310). Available online: https://www.swisssteel-group.com/content-media/documents/Data-Sheets/Stainless-Steel/1.4310_de.pdf (accessed on 21 December 2024).
- Acidur 4301 (1.4301). Available online: https://www.swisssteel-group.com/content-media/documents/Data-Sheets/Stainless-Steel/1.4301_de.pdf (accessed on 21 December 2024).
- EN-AW-5005 (3.3315). Available online: https://facts.kloeckner.de/werkstoffe/aluminium/en-aw-5005/ (accessed on 21 December 2024).
- EN-AW-6082 (3.2315). Available online: https://facts.kloeckner.de/werkstoffe/aluminium/3-2315/ (accessed on 21 December 2024).
- ISO 6892-1:2019; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. International Organization for Standardization: Geneva, Switzerland, 2019. Available online: https://www.dinmedia.de/de/norm/din-en-iso-6892-1/317931281 (accessed on 21 December 2024).
- ASTM E8/E8M-24; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2024. Available online: https://www.astm.org/e0008_e0008m-24.html (accessed on 28 January 2025).
- Kämmerer, B. Chemical Composition in Stainless Steel Surfaces (Oberflächenzusammensetzung von Chromstählen). Ph.D. Thesis, University of Augsburg, Augsburg, Germany, 2012; p. 69. [Google Scholar]
- Schütze, M.; Roche, M.; Bender, R. Corrosion Resistance of Steels, Nickel Alloys, and Zinc in Aqueous Media, 1st ed.; Wiley-VCH: Weinheim, Germany, 2015; p. 301. [Google Scholar]
- Engler, O. Texture and anisotropy in the Al–Mg alloy AA 5005—Part I: Texture evolution during rolling and recrystallization. Mater. Sci. Eng. A 2014, 618, 654–662. [Google Scholar] [CrossRef]
- Mao, W.; Gao, S.; Gong, W.; Kawasaki, T.; Ito, T.; Harjo, S.; Tsuji, N. Martensitic transformation-governed Lüders deformation enables large ductility and late-stage strain hardening in ultrafine-grained austenitic stainless steel at low temperatures. Acta Mater. 2024, 278, 120233. [Google Scholar] [CrossRef]
- Steineder, K.; Krizan, D.; Schneider, R.; Béal, C.; Sommitsch, C. On the microstructural characteristics influencing the yielding behavior of ultra-ne grained medium-Mn steels. Acta Mater. 2017, 139, 39–50. [Google Scholar] [CrossRef]
- Rechsteiner, A. Personal Communication; Victorinox: Ibach, Switzerland, 2022. [Google Scholar]
- Trillo, E.; Murr, L. Effects of carbon content, deformation, and interfacial energetics on carbide precipitation and corrosion sensitization in 304 stainless steel. Acta Mater. 1999, 47, 235–245. [Google Scholar] [CrossRef]
- Yae Kina, A.; Tavares, S.S.M.; Pardal, J.M.; Souza, J.A. Microstructure and intergranular corrosion resistance evaluation of AISI 304 steel for high temperature service. Mater. Charact. 2008, 59, 651–655. [Google Scholar] [CrossRef]
- Mayo, E.W. Predicting IGSCC/IGA susceptibility of Ni–Cr–Fe alloys by modeling of grain boundary chromium depletion. Mater. Sci. Eng. A 1997, 232, 129–139. [Google Scholar] [CrossRef]
- Tavares, S.S.M.; Moura, V.; da Costa, V.C.; Ferreira, M.L.R.; Pardal, J.M. Microstructural changes and corrosion resistance of AISI 310S steel exposed to 600–800 °C. Mater. Charact. 2009, 60, 573–578. [Google Scholar] [CrossRef]
- Kaiser, M.; Kumkar, M.; Russ, S.; Auerswald, J.; Mielke, M. Single pass laser cutting of high-precision components: Femtosecond versus picosecond pulses. In Proceedings of the 34th International Congress on Applications of Lasers & Electro-Optics (ICALEO), Atlanta, GA, USA, 18–22 October 2015; pp. 155–164. [Google Scholar]
- Ackerl, N.; Fisch, G.; Auerswald, J.; Wegener, K. Evolution of microstructures on stainless steel induced by ultra-short pulsed laser ablation. Springer Nat. Appl. Sci. 2020, 2, 652. [Google Scholar] [CrossRef]
- Auerswald, J.; Ruckli, A.; Gschwilm, T.; Weber, P.; Diego-Vallejo, D.; Schlüter, H. Taper Angle Correction in Cutting of Complex Micro-mechanical Contours with Ultra-Short Pulse Laser. J. Mech. Eng. Autom. 2016, 6, 334–338. [Google Scholar] [CrossRef]
- Yang, J.; Heogh, W.; Ju, H.; Kang, S.; Jang, T.S.; Jung, H.D.; Jahazi, M.; Han, S.C.; Park, S.J.; Kim, H.S.; et al. Functionally graded structure of a nitride-strengthened Mg2Si-based hybrid composite. J. Magnes. Alloys 2024, 12, 1239–1256. [Google Scholar] [CrossRef]
- Anand, L.; Su, C. A constitutive theory for metallic glasses at high homologous temperatures. Acta Mater. 2007, 55, 3735–3747. [Google Scholar] [CrossRef]
- Su, C.; Anand, L. Plane strain indentation of a Zr-based metallic glass: Experiments and numerical simulation. Acta Mater. 2006, 54, 179–189. [Google Scholar] [CrossRef]
- Kumar, A.; Li, D.Y. Clarification of the Puzzled Effects of Cold Work on Wear of Metals from the Viewpoint of Wearing Energy Consumption. Tribol. Lett. 2022, 70, 3. [Google Scholar] [CrossRef]
- Yoshida, F.; Uemori, T.; Fujiwara, K. Elastic–plastic behavior of steel sheets under in-plane cyclic tension–compression at large strain. Int. J. Plast. 2002, 18, 633–659. [Google Scholar] [CrossRef]
- Li, Q.; Hua, G.; Lu, H.; Yu, B.; Li, D.Y. Understanding the Effect of Plastic Deformation on Elastic Modulus of Metals Based on a Percolation Model with Electron Work Function. J. Miner. Met. Mater. Soc. 2018, 70, 1130–1135. [Google Scholar] [CrossRef]
C | Si | Mn | Cr | Ni | Mo | P | S | |
---|---|---|---|---|---|---|---|---|
1.4310 | 0.05 0.15 | - 2 | - 2 | 16 19 | 6 9.5 | - 0.8 | - 0.045 | - 0.015 |
1.4301 | - 0.07 | - 1 | - 2 | 17.5 19.5 | 8 10.5 | - - | - 0.045 | - 0.03 |
Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | |
---|---|---|---|---|---|---|---|---|
5005 | - 0.30 | - 0.70 | - 0.20 | - 0.20 | 0.50 1.10 | - 0.10 | - 0.25 | - 0.015 |
6082 | 0.70 1.30 | - 0.50 | - 0.10 | 0.40 1.00 | 0.60 1.20 | - 0.25 | - 0.20 | - 0.10 |
Alloy | a0 | b0 | L0 | Lc | B | H | Lt | R |
---|---|---|---|---|---|---|---|---|
1.4310 | 0.1 | 2.5 | 10 | 10.65 | 5.0 | 6.0 | 40.0 | 20.0 |
1.4301 | 0.1 | 2.5 | 10 | 10.65 | 5.0 | 6.0 | 40.0 | 20.0 |
5005 | 0.5 | 3.0 | 11 | 19.84 | 8.0 | 9.0 | 60.0 | 20.0 |
6082 | 1.0 | 3.0 | 11 | 15.79 | 8.0 | 8.4 | 52.0 | 20.0 |
Material | E [GPa] | Rp0.2 [MPa] | Rm [MPa] | A10mm [%] |
---|---|---|---|---|
1.4310 | 168 ± 5 | 1140 ± 80 | 1413 ± 16 | 25.5 ± 0.6 |
1.4301 | 177 ± 14 | 270 ± 14 | 678 ± 7 | 52 ± 4 |
Thickness t Diameter D | E [GPa] | Rp0.2 [MPa] | Rm [MPa] | A11mm|A5.65 [%] |
---|---|---|---|---|
t = 1 mm | 66 ± 2 | 343 ± 3 | 374 ± 3 | 8.4 ± 0.5 1 |
D = 5 mm | 68.3 ± 1.2 | 299 ± 3 | 325 ± 3 | 13.3 ± 0.9 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Auerswald, J.; Tenisch, J.; Fallegger, C.; Seifert, M. The Influence of Sample Microfabrication and Annealing on the Mechanical Strain–Stress Behavior of Stainless Steels and Corrosion Resistant Aluminum Alloys in Micro-Tensile Tests. Micromachines 2025, 16, 309. https://doi.org/10.3390/mi16030309
Auerswald J, Tenisch J, Fallegger C, Seifert M. The Influence of Sample Microfabrication and Annealing on the Mechanical Strain–Stress Behavior of Stainless Steels and Corrosion Resistant Aluminum Alloys in Micro-Tensile Tests. Micromachines. 2025; 16(3):309. https://doi.org/10.3390/mi16030309
Chicago/Turabian StyleAuerswald, Janko, Joel Tenisch, Christoph Fallegger, and Markus Seifert. 2025. "The Influence of Sample Microfabrication and Annealing on the Mechanical Strain–Stress Behavior of Stainless Steels and Corrosion Resistant Aluminum Alloys in Micro-Tensile Tests" Micromachines 16, no. 3: 309. https://doi.org/10.3390/mi16030309
APA StyleAuerswald, J., Tenisch, J., Fallegger, C., & Seifert, M. (2025). The Influence of Sample Microfabrication and Annealing on the Mechanical Strain–Stress Behavior of Stainless Steels and Corrosion Resistant Aluminum Alloys in Micro-Tensile Tests. Micromachines, 16(3), 309. https://doi.org/10.3390/mi16030309