Maximum Correntropy Criterion Kalman/Allan Variance-Assisted FIR Integrated Filter for Indoor Localization
Abstract
1. Introduction
2. Indoor Integrated Localization by Fusing INS and UWB
2.1. Indoor Integrated Localization Scheme
2.2. State and Measurement Equations
3. mccKF/FIR Integrated Filter
3.1. Maximum Correntropy Criterion
3.2. mccKF Filter
Algorithm 1: KF algorithm based on model (1) and (2) |
3.3. Allan Variance
3.4. FIR Filter
3.5. mccKF/FIR Integrated Filter
4. Results
4.1. The Design of the Testbed
4.1.1. Test 1
4.1.2. Test 2
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
INS | Inertial Navigation System |
KF | Kalman Filter |
UWB | Ultra-Wideband |
3D-SLAM | 3D Simultaneous Localization and Mapping |
UAVs | Unmanned Aerial Vehicles |
PD | Parkinson’s Disease |
ZUPT | Zero-velocity UPdaTe |
MCC | Maximum Correntropy Criterion |
GNSS | Global Navigation Satellite System |
FIR | Finite Impulse Response |
mccKF | Maximum Correntropy Criterion KF |
LiDAR | Light Detection And Ranging |
RTK | Real-Time Kinematics |
RMSE | Root Mean Square Error |
OD | Odometer |
NHC | Nonholonomic Constraint |
DVL | Doppler Velocity Log |
MEMS | Microelectormechanical System |
GPS | Global Positioning System |
DRKF | Dual-Rate Kalman Filter |
CKF | Cubature Kalman Filter |
LWLR | Locally Weighted Linear Regression |
LSTM | Long Short-Term Memory |
CNS | Celestial Navigation System |
EFIR | Extended Finite Impulse Response |
References
- Xu, Y.; Wan, D.; Shmaliy, Y.S.; Chen, X.; Tao, S.; Bi, S. Dual Free-Size LS-SVM Assisted Maximum Correntropy Kalman Filtering for Seamless INS-Based Integrated Drone Localization. IEEE Trans. Ind. Electron. 2023, 71, 9845–9854. [Google Scholar] [CrossRef]
- Chiang, K.W.; Tsai, G.J.; Li, Y.H.; Li, Y.; El-Sheimy, N. Navigation Engine Design for Automated Driving Using INS/GNSS/3D LiDAR-SLAM and Integrity Assessment. Remote Sens. 2020, 12, 1564. [Google Scholar] [CrossRef]
- LaForest, L.; Hasheminasab, S.M.; Zhou, T.; Flatt, J.E.; Habib, A. New Strategies for Time Delay Estimation during System Calibration for UAV-Based GNSS/INS-Assisted Imaging Systems. Remote Sens. 2019, 11, 1811. [Google Scholar] [CrossRef]
- Liu, R.; Wang, Z.; Qiu, S.; Zhao, H.; Wang, C.; Shi, X.; Lin, F. A Wearable Gait Analysis and Recognition Method for Parkinson’s Disease Based on Error State Kalman Filter. IEEE J. Biomed. Health Inform. 2022, 26, 4165–4175. [Google Scholar] [CrossRef] [PubMed]
- El-Sheimy, N.; Youssef, A. Inertial sensors technologies for navigation applications: State of the art and future trends. Satell. Navig. 2020, 1, 21. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, K.; Jiang, C.; Li, Z.; Yang, C.; Liu, D.; Zhang, H. Motion-Constrained GNSS/INS Integrated Navigation Method Based on BP Neural Network. Remote Sens. 2023, 15, 154. [Google Scholar] [CrossRef]
- Wu, J.; Jiang, J.; Zhang, C.; Li, Y.; Yan, P.; Meng, X. A Novel Optimal Robust Adaptive Scheme for Accurate GNSS RTK/INS Tightly Coupled Integration in Urban Environments. Remote Sens. 2023, 15, 3725. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, K.; Yang, C.; Li, Z.; Zhou, F.; Liu, D. GNSS/INS/OD/NHC Adaptive Integrated Navigation Method Considering the Vehicle Motion State. IEEE Sens. J. 2023, 23, 13511–13523. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, R.; Wang, G.; Long, C.; Hu, M. Robust Interactive Multimodel INS/DVL Intergrated Navigation System With Adaptive Model Set. IEEE Sens. J. 2023, 23, 8568–8580. [Google Scholar] [CrossRef]
- Fan, Q.; Sun, B.; Sun, Y.; Zhuang, X. Performance Enhancement of MEMS-Based INS/UWB Integration for Indoor Navigation Applications. IEEE Sens. J. 2017, 17, 3116–3130. [Google Scholar] [CrossRef]
- Zhao, S.; Huang, B. Trial-and-error or avoiding a guess? Initialization of the Kalman filter. Automatica 2020, 121, 109184. [Google Scholar] [CrossRef]
- Zhao, L.; Qiu, H.; Feng, Y. Analysis of a Robust Kalman filter in loosely coupled GPS/INS navigation system. Measurement 2015, 80, 138–147. [Google Scholar] [CrossRef]
- Han, S.; Wang, J. Integrated GPS/INS navigation system with dual-rate Kalman Filter. GPS Solut. 2012, 16, 389–404. [Google Scholar] [CrossRef]
- Zhou, W.; Hou, J.; Liu, L.; Sun, T.; Liu, J. Design and Simulation of the Integrated Navigation System based on Extended Kalman Filter. Open Phys. 2017, 15, 182–187. [Google Scholar] [CrossRef]
- Feng, K.; Li, J.; Zhang, X.; Zhang, X.; Shen, C.; Cao, H.; Yang, Y.; Liu, J. An Improved Strong Tracking Cubature Kalman Filter for GPS/INS Integrated Navigation Systems. Sensors 2018, 18, 1919. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Chen, X. An ANN-Based Data Fusion Algorithm for INS/CNS Integrated Navigation System. IEEE Sens. J. 2022, 22, 7846–7854. [Google Scholar] [CrossRef]
- Shmaliy, Y.S. Linear optimal FIR estimation of discrete time-invariant state-space models. IEEE Trans. Signal Process. 2010, 58, 3086–3096. [Google Scholar] [CrossRef]
- Xu, Y.; Shmaliy, Y.S.; Ahn, C.K.; Chen, X.; Guo, H.; Zhuang, Y. Blind Robust Multi-Horizon EFIR Filter for Tightly Integrating INS and UWB. IEEE Sens. J. 2021, 21, 23037–23045. [Google Scholar] [CrossRef]
- Zhao, S.; Shmaliy, Y.S.; Ahn, C.K.; Liu, F. Self-tuning unbiased finite impulse response filtering algorithm for processes with unknown measurement noise covariance. IEEE Trans. Control Syst. Technol. 2020, 29, 1372–1379. [Google Scholar] [CrossRef]
Algorithms | RMSE (m) | |||
---|---|---|---|---|
East Direction | North Direction | Upward Direction | Mean | |
KF | 0.20 | 0.20 | 0.28 | 0.23 |
mccKF | 0.15 | 0.14 | 0.28 | 0.19 |
mccKF/FIR | 0.12 | 0.11 | 0.26 | 0.16 |
Algorithms | RMSE (m) | |||
---|---|---|---|---|
East Direction | North Direction | Upward Direction | Mean | |
KF | 0.11 | 0.15 | 0.29 | 0.18 |
mccKF | 0.14 | 0.17 | 0.27 | 0.19 |
mccKF/Allan-assisted FIR | 0.10 | 0.10 | 0.20 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Deng, L.; Zhang, Y.; Xu, Y.; Gao, Y. Maximum Correntropy Criterion Kalman/Allan Variance-Assisted FIR Integrated Filter for Indoor Localization. Micromachines 2025, 16, 303. https://doi.org/10.3390/mi16030303
Li M, Deng L, Zhang Y, Xu Y, Gao Y. Maximum Correntropy Criterion Kalman/Allan Variance-Assisted FIR Integrated Filter for Indoor Localization. Micromachines. 2025; 16(3):303. https://doi.org/10.3390/mi16030303
Chicago/Turabian StyleLi, Manman, Lei Deng, Yide Zhang, Yuan Xu, and Yanli Gao. 2025. "Maximum Correntropy Criterion Kalman/Allan Variance-Assisted FIR Integrated Filter for Indoor Localization" Micromachines 16, no. 3: 303. https://doi.org/10.3390/mi16030303
APA StyleLi, M., Deng, L., Zhang, Y., Xu, Y., & Gao, Y. (2025). Maximum Correntropy Criterion Kalman/Allan Variance-Assisted FIR Integrated Filter for Indoor Localization. Micromachines, 16(3), 303. https://doi.org/10.3390/mi16030303