Highly Dense TiO2 Nanorods as Potential Electrode Material for Electrochemical Detection of Multiple Heavy Metal Ions in Aqueous Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of TiO2 NRs
2.2. Characterization of TiO2 NRs
3. Results and Discussion
3.1. Morphological Properties of TiO2 NRs
3.2. Crystalline, Optical, and Structural Properties of TiO2 NRs
3.3. XPS Studies of TiO2 NRs
3.4. Selectivity and Sensing Performance of TiO2 NR-Modified HMI Sensor
Electrodes | Target Metals | Dynamic Range | LOD | Sensitivity | Ref. |
---|---|---|---|---|---|
TiON/TiO2 | Pb2+ | 10−5 to 10−1 M | 10−5 M | - | [56] |
Zr/ZrO2 nanotube | Cu2+ | 0.05–2 μM | 40 nM | - | [57] |
Ti/TiO2 nanotubes | Cu2+ | 0.01–1 μM | 7 nM | - | [58] |
SnO2/rG0 | Cu2+ | 0.4–1.2 μM | 0.1141 nM | 5.167 mA μM−1 | [59] |
TiO2 NRs | Cu2+ | 10–100 mM | 37 mM | 92.2 µA.mM−1.cm−2 | This work |
TiO2 NRs | Hg2+ | 10–200 mM | 28.5 mM | 19.67 µA.mM−1.cm−2 | This work |
TiO2 NRs | Cr3+ | 10–200 mM | 21.7 mM | 15.6 µA.mM−1.cm−2 | This work |
3.5. Reliability and Stability of TiO2 NR-Based Tri-HMI Sensor
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, S.; Jeong, Y.; Park, M.O.; Jang, Y.; Bae, J.S.; Hong, K.S.; Kim, S.; Song, P.; Yoon, J.H. Development of boron doped diamond electrodes material for heavy metal ion sensor with high sensitivity and durability. J. Mat. Res. Technol. 2023, 23, 1375–1385. [Google Scholar] [CrossRef]
- Li, H.; Li, N.; Zuo, P.; Qu, S.; Qin, F.; Shen, W. Utilization of nitrogen, sulfur co-doped porous carbon micron spheres as bifunctional electrocatalysts for electrochemical detection of cadmium, lead and mercury ions and oxygen evolution reaction. J. Colloid Interface Sci. 2023, 640, 391–404. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Mao, W.; Wang, D.; Hu, X.; Liu, B.; Su, Z. Hourglass shaped polyoxometalate-based materials as electrochemical sensors for the detection of trace Cr (VI) in a wide pH range. Talanta 2023, 257, 124270. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yao, Y.; Zhang, C.; Ping, J. Determination of heavy metal ions in infant Milk powder using a Nanoporous carbon modified disposable sensor. Foods 2023, 12, 730. [Google Scholar] [CrossRef]
- Huang, P.; Xiong, Y.; Ge, Y.; Wen, Y.; Zeng, X.; Zhang, J.; Wang, P.; Wang, Z.; Chen, S. Magnetic Fe3O4 nanoparticles decorated phosphorus-doped biochar-attapulgite/bismuth film electrode for smartphone-operated wireless portable sensing of ultra-trace multiple heavy metal ions. Microch. Acta 2023, 190, 94. [Google Scholar] [CrossRef]
- Xiong, W.; Zhang, P.; Liu, S.; Lv, Y.; Zhang, D. Catalyst-free synthesis of phenolic-resin-based carbon nanospheres for simultaneous electrochemical detection of Cu (II) and Hg (II). Diam. Rel. Mater. 2021, 111, 108170. [Google Scholar] [CrossRef]
- Costa, M.; Di Masi, S.; Garcia-Cruz, A.; Piletsky, S.A.; Malitesta, C. Disposable electrochemical sensor based on ion imprinted polymeric receptor for Cd (II) ion monitoring in waters. Sens. Actuators B Chem. 2023, 383, 133559. [Google Scholar] [CrossRef]
- Dinçer, R.; Karabiberoğlu, S.U.; Dursun, Z. Simultaneous electrochemical determination of trace zinc (II), cadmium (II) and lead (II) in lipsticks using a novel electrode covered with bismuth/over-oxidized poly (xylenol blue) film. Microchem. J. 2023, 189, 108548. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Li, J.; Qu, M.; Kang, M.; Zhang, C. Nonmodified laser-induced graphene sensors for Lead-ion detection. ACS Appl. Nano Mater. 2023, 6, 3599–3607. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, Y.; Yin, X.; Zhang, Y.; Yang, Z.; Wang, H.; Yang, W.; Pang, P. Electrochemical determination of Pb2+ based on DNAzyme-triggered rolling circle amplification and DNA-templated silver nanoclusters amplification strategy. Microchem. J. 2023, 189, 108544. [Google Scholar] [CrossRef]
- Elsebai, B.; Ghica, M.E.; Abbas, M.N.; Brett, C.M.A. Novel Amperometric mercury-selective sensor based on organic Chelator Ionophore. Molecules 2023, 28, 2809. [Google Scholar] [CrossRef]
- Su, X.; Tian, X.; Sun, Z.; Zou, X.; Zhang, W. Signal-on electrochemical aptasensor based on RGO-AuNPs and exonuclease-III with assistance of external probe for Hg2+ determination in shellfish. Microchem. J. 2023, 190, 108576. [Google Scholar] [CrossRef]
- Que, E.L.; Domaille, D.W.; Chang, C.J. Metals in neurobiology: Probing their chemistry and biology with molecular imaging. Chem. Rev. 2008, 108, 1517–1549. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Duan, X.; Chen, Z.; Liu, Y.; Xie, T.; Fang, L. A near-infrared fluorescent probe for detecting copper (II) with high selectivity and sensitivity and its biological imaging applications. Chem. Commun. 2011, 47, 7755–7757. [Google Scholar] [CrossRef] [PubMed]
- Torrado, A.; Walkup, G.K.; Imperiali, B. Exploiting polypeptide motifs for the design of selective Cu (II) ion chemosensors. J. Am. Chem. Soc. 1998, 120, 609–610. [Google Scholar] [CrossRef]
- Zheng, A.; Chen, J.; Wu, G.; Zhang, Y.G.; Wei, H. A novel fluorescent distinguished probe for Cr (VI) in aqueous solution. Spectrochim. Acta Part A Mol. Biomol. Spec. 2009, 74, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.M.; Chaurasia, S. Detection of Chromium in surface and groundwater and its bio-absorption using bio-wastes and vermiculite. Eng. Sci. Technol. 2020, 23, 1153–1161. [Google Scholar] [CrossRef]
- Wang, Y.; Su, H.; Gu, Y.; Song, X.; Zhao, J. Carcinogenicity of chromium and chemoprevention: A brief update. OncoTargets Ther. 2017, 10, 4065–4079. [Google Scholar] [CrossRef]
- Bhanja, A.K.; Mishra, S.; Naskar, K.; Maity, S.; Sahab, K.D.; Sinha, C. Specific recognition of Cr3+ under physiological conditions by allyl substituted appendage rhodamine and its cell-imaging studies. Dalton Trans. 2017, 46, 16516. [Google Scholar] [CrossRef]
- Yin, R.V.; Phung, O.J. Effect of chromium supplementation on glycated hemoglobin and fasting plasma glucose in patients with diabetes mellitus. Nutr. J. 2015, 14, 14. [Google Scholar] [CrossRef]
- Coetzee, J.J.; Bansal, N.; Chirwa, E.M.N. Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation. Expos. Health 2020, 12, 51–62. [Google Scholar] [CrossRef]
- Prasad, S.; Yadav, K.K.; Kumar, S.; Gupta, N.; Cabral-Pinto, M.M.S.; Rezania, S.; Radwane, N.; Alam, J. Chromium contamination and effect on environmental health and its remediation: A sustainable approach. J. Environ. Manag. 2021, 285, 112174. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.B.; Akhtar, M.S.; Kong, I.; Ameen, S. Tailoring porous NiMoO4 nanotube via MoO3 nanorod precursor for environmental monitoring: Electrochemical detection of micro-sized polyvinylchloride. Chemosphere 2024, 369, 143796. [Google Scholar] [CrossRef] [PubMed]
- Ameen, S.; Akhtar, M.S.; Umar, A.; Shin, H.S. Effective modified electrode of poly(1-naphthylamine) nanoglobules for ultra-high sensitive ethanol chemical sensor. Chem. Eng. J. 2013, 229, 267–275. [Google Scholar] [CrossRef]
- Ameen, S.; Akhtar, M.S.; Seo, H.K.; Shin, H.S. An electrochemical sensing platform based on hollow mesoporous ZnO nanoglobules modified glassy carbon electrode: Selective detection of piperidine chemical. Chem. Eng. J. 2015, 270, 564–571. [Google Scholar] [CrossRef]
- Ameen, S.; Akhtar, M.S.; Shin, H.S. Manipulating the structure of polyaniline by exploiting redox chemistry: Novel p-NiO/n-polyaniline/n-Si Schottky diode based chemosensor for the electrochemical detection of hydrazinobenzene. Electrochim. Acta 2016, 215, 200–211. [Google Scholar] [CrossRef]
- Chakraborty, B.; RoyChaudhuri, C. Metal/metal oxide modified graphene nanostructures for electrical biosensing applications: A review. IEEE Sens. J. 2021, 21, 17629–17642. [Google Scholar] [CrossRef]
- Kim, E.B.; Ameen, S.; Akhtar, M.S.; Shin, H.S. Iron-nickel co-doped ZnO nanoparticles as scaffold for field effect transistor sensor: Application in electrochemical detection of hexahydropyridine chemical. Sens. Actuors B Chem. 2018, 275, 422–431. [Google Scholar] [CrossRef]
- Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Nubashir, M.; Majeed, Z.; Banat, F.; Ho, S.H.; Show, P.L. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
- Li, J.; Li, C.; Zhao, Z.; Guo, Y.; Chen, H.; Liu, P.; Zhao, M.; Guo, J. Biomolecules meet organic frameworks: From synthesis strategies to diverse applications. Nanoscale 2024, 16, 4529–4541. [Google Scholar] [CrossRef]
- Hernandes-Cocoletzi, H.; Salinas, R.A.; Aguila-Almanza, E.; Rubio-Rosas, E.; Chai, W.S.; Chew, K.W.; Mariscal-Hernandez, C.; Show, P.L. Natural hydroxyapatite from fishbone waste for the rapid adsorption of heavy metals of aqueous effluent. Environ. Teck. Innov. 2020, 20, 101109. [Google Scholar] [CrossRef]
- Kim, E.B.; Imran, M.; Akhtar, M.S.; Shin, H.S.; Ameen, S. Enticing 3D peony-like ZnGa2O4 microstructures for electrochemical detection of N, N-dimethylmethanamide chemical. J. Hazard. Mater. 2021, 404, 124069. [Google Scholar] [CrossRef]
- Kim, E.B.; Abdullah, A.S.; Akhtar, M.S.; Shin, H.S. Environment-friendly and highly sensitive dichloromethane chemical sensor fabricated with ZnO nanopyramids-modified electrode. J. Taiwan Inst. Chem. Eng. 2019, 102, 143–152. [Google Scholar] [CrossRef]
- Ameen, S.; Akhtar, M.S.; Shin, H.S. Highly sensitive hydrazine chemical sensor fabricated by modified electrode of vertically aligned zinc oxide nanorods. Talanta 2012, 100, 377–383. [Google Scholar] [CrossRef]
- Yu, J.; Huang, X.; He, Y.; Tang, D.; Huang, T.; Liu, L.; Wu, H.; Peng, D.L.; Zhao, D.; Lan, K.; et al. Compacted mesoporous titania nanosheets anode for pseudocapacitance-dominated, high-rate, and high-volumetric sodium-ion storage. SmartMat 2023, 4, 1192. [Google Scholar] [CrossRef]
- Ameen, S.; Akhtar, M.S.; Seo, H.K.; Shin, H.S. Solution-processed CeO2/TiO2 nanocomposite as potent visible light photocatalyst for the degradation of bromophenol dye. Chem. Eng. J. 2014, 247, 193–198. [Google Scholar] [CrossRef]
- Williams, G.; Seger, B.; Kamat, P.V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2, 1487–1491. [Google Scholar] [CrossRef]
- Verwey, E.J.W. Kristallgeometrie, Kristallphysik, Kristallchemie. Z. Krist. 1935, 91, 317–320. [Google Scholar]
- Kim, Y.H.; Lee, I.K.; Song, Y.S.; Lee, M.H.; Kim, B.Y.; Cho, N.I.; Lee, D.Y. Influence of TiO2 coating thickness on energy conversion efficiency of dye-sensitized solar cells. Electron. Mater. Lett. 2014, 10, 445–449. [Google Scholar] [CrossRef]
- Ying, C.; Guo, F.; Xu, L.; Lv, K.; Shi, C. Ultra-thin CdS buffer layer for efficient Sb2S3-sensitized TiO2 nanorod array solar cells using Sb-thiourea complex solution. J. Nanoparticle Res. 2021, 23, 3–9. [Google Scholar] [CrossRef]
- Praveen, P.; Viruthagiri, G.; Mugundan, S.; Shanmugam, N. Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles—Synthesized via sol-gel route. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 117, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Zhang, X.; Zhang, Y.; Zhang, L. Photocatalytic Properties and Optical Characterization of TiO2 Nanorods with Enhanced Anatase Phase. J. Photochem. Photobiol. A Chem. 2023, 434, 114267. [Google Scholar]
- Gupta, P.; Singh, R.; Kumar, S. Synthesis and Optical Characterization of Anatase TiO2 Nanorods: Band Gap and Photocatalytic Properties. Appl. Sur. Sci. 2022, 580, 153394. [Google Scholar]
- Landage, K.S.; Gajanan, C.J.B.; Arbade, K.; Khanna, P. Biological approach to synthesize TiO2 nanoparticles using Staphylococcus aureus for antibacterial and anti-biofilm applications. J. Microbiol. Exp. Res. 2020, 8, 36–43. [Google Scholar]
- Ouda, A.A.; Alosfur, F.K.M.; Ridha, N.J.; Abud, S.H.; Umran, N.M.; Al-Aaraji, H.H.; Madlool, R.A. Facile method to synthesis of anatase TiO2 nanorods. J. Phys. Conf. Ser. 2018, 1032, 012038. [Google Scholar] [CrossRef]
- Dai, J.; Hou, X.; Wu, Z.; Sun, X. Structural and Optical Properties of TiO2 Nanoparticles Prepared by Sol-Gel Method. Mater. Res. Exp. 2019, 6, 085038. [Google Scholar]
- Parra, A.; Atria, Y.; Yañez, C.; Gacitúa, M. Enhanced photocatalytic activity of TiO2 nanoparticles synthesized by green chemistry using grape pomace extract. Appl. Surf. Sci. 2020, 527, 146758. [Google Scholar]
- Moussa, S.; Amara, H.; Sfar, H. Structural and Optical Properties of TiO2 Nanorods Synthesized by Hydrothermal Method. J. Mater. Sci. Mater. Elec. 2021, 32, 18931–18939. [Google Scholar]
- Huang, S.; Xu, H.; Zhao, Y. Raman Spectroscopy and Optical Properties of TiO2 Nanorods: Phase Identification and Performance Analysis. J. Mater. Sci. Mater. Electr. 2022, 33, 1792–1802. [Google Scholar]
- Li, J.; Chen, H.; Yang, L. Raman Spectroscopic Insights into the Phase and Structural Properties of TiO2 Nanorods. Appl. Surf. Sci. 2021, 556, 135584. [Google Scholar]
- Hsu, H.; Chen, S.; Chiu, C. Structural and Electronic Properties of Anatase TiO2 Nanorods: An X-ray Photoelectron Spectroscopy Study. J. Phys. Chem. C 2023, 127, 4592–4600. [Google Scholar]
- Qahtan, T.F.; Owolabi, T.O.; Sale, T.A. X-ray photoelectron spectroscopy of surface-treated TiO2 mesoporous film by 500 eV argon ion beam. J. Mol. Liquids 2024, 393, 123556. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, M.; Xu, J. Surface Characterization of Anatase TiO2: X-ray Photoelectron Spectroscopy Analysis of Oxygen Species. Surf. Sci. Rep. 2024, 79, 100834. [Google Scholar]
- Kumar, S.; Sharma, A.; Rathi, A. X-ray Photoelectron Spectroscopy of TiO2 Nanostructures: Insights into Oxygen Bonding States. J. Mater. Chem. A 2022, 10, 1672–1680. [Google Scholar]
- Xiong, Y.; Zhu, Z.; Ding, D.; Lu, W.; Xue, Q. Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor. Appl. Surf. Sci. 2018, 443, 114–121. [Google Scholar] [CrossRef]
- Elsayed, A.M.; Ahmed, A.M.; Tammam, M.T.; Eissa, M.F.; Aly, A.H. Sensing of heavy metal Pb2+ ions in water utilizing the photonic structure of highly controlled hexagonal TiON/TiO2 nanotubes. Sci. Rep. 2024, 14, 1015. [Google Scholar] [CrossRef]
- Buica, G.O.; Stoian, A.B.; Manole, C.; Demetrescu, I.; Pirvu, C. Zr/ZrO2 nanotube electrode for detection of heavy metal ions. Electrochem. Commun. 2020, 110, 106614. [Google Scholar] [CrossRef]
- Pirvu, C.; Prodana, M.; Dumitriu, C.; Gheboianu, A.G.; Pandele, A.M.; Enachescu, M.; Vasile, G.G.; Buica, G.O. Heavy Metal Ion Detection Using TiO2 Nanotubes and Self-Reduced TiO2 Nanotube Electrodes. Appl. Sci. 2024, 14, 11879. [Google Scholar] [CrossRef]
- Wei, Y.; Gao, C.; Meng, F.L.; Li, H.H.; Wang, L.; Liu, J.H.; Huang, X.J. SnO2/Reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II): An interesting favorable mutual interference. J. Phys. Chem. C 2012, 116, 1034–1041. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ameen, S. Highly Dense TiO2 Nanorods as Potential Electrode Material for Electrochemical Detection of Multiple Heavy Metal Ions in Aqueous Medium. Micromachines 2025, 16, 275. https://doi.org/10.3390/mi16030275
Ameen S. Highly Dense TiO2 Nanorods as Potential Electrode Material for Electrochemical Detection of Multiple Heavy Metal Ions in Aqueous Medium. Micromachines. 2025; 16(3):275. https://doi.org/10.3390/mi16030275
Chicago/Turabian StyleAmeen, Sadia. 2025. "Highly Dense TiO2 Nanorods as Potential Electrode Material for Electrochemical Detection of Multiple Heavy Metal Ions in Aqueous Medium" Micromachines 16, no. 3: 275. https://doi.org/10.3390/mi16030275
APA StyleAmeen, S. (2025). Highly Dense TiO2 Nanorods as Potential Electrode Material for Electrochemical Detection of Multiple Heavy Metal Ions in Aqueous Medium. Micromachines, 16(3), 275. https://doi.org/10.3390/mi16030275