Hydrogen Production from Chemical Hydrides via Porous Carbon Particle Composite Catalyst Embedding of Metal Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Modification of PCPs
2.3. In Situ Metal Particle Synthesis Within PCP-PEI
2.4. Catalytic Activity of M@PCP and M@PCP-PEI (M:Co, Ni, or Cu) Composites
2.4.1. Hydrolysis of NaBH4
2.4.2. Hydrolysis of NH3BH3
2.5. Activation Parameters for NaBH4 and NH3BH3 Hydrolysis Catalyzed by Co@PCP-PEI Composites
2.6. Reuse of Catalyst in Hydrolysis of NaBH4 and NH3BH3
3. Results and Discussion
3.1. Synthesis and Characterization M@PCP and M@PCP-PEI Composite Catalysts
3.2. Catalytic Activity of M@PCP and M@PCP-PEI Composites in Hydrogen Production Reaction from Hydrolysis of NaBH4 and NH3BH3
3.2.1. Hydrogen Production from Hydrolysis of NaBH4
3.2.2. H2 Production for Hydrolysis of NH3BH3
3.3. Activation Parameters for Co@PCP-PEI-Catalyzed Hydrolysis of Both NaBH4 and NH3BH3
3.4. Reusability of Co@PCP-PEI Composite Catalyst
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clarke, L.; Eom, J.; Marten, E.H.; Horowitz, R.; Kyle, P.; Link, R.; Mignone, B.K.; Mundra, A.; Zhou, Y. Effects of long-term climate change on global building energy expenditures. Energy Econ. 2018, 72, 667–677. [Google Scholar] [CrossRef]
- Cronin, J.; Anandarajah, G.; Dessens, O. Climate change impacts on the energy system: A review of trends and gaps. Clim. Change 2018, 151, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- Wilbanks, T.; Bilello, D.; Bull, S. Effects of Climate Change on Energy Production and Use in the United States; DigitalCommons @ University of Nebraska: Lincoln, NE, USA, 2008. [Google Scholar]
- Megía, P.J.; Vizcaíno, A.J.; Calles, J.A.; Carrero, A. Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review. Energy Fuels 2021, 35, 16403–16415. [Google Scholar] [CrossRef]
- Amin, M.; Shah, H.H.; Fareed, A.G.; Khan, W.U.; Chung, E.; Zia, A.; Rahman Farooqi, Z.U.; Lee, C. Hydrogen production through renewable and non-renewable energy processes and their impact on climate change. Int. J. Hydrogen Energy 2022, 47, 33112–33134. [Google Scholar] [CrossRef]
- Ishaq, H.; Dincer, I. Comparative assessment of renewable energy-based hydrogen production methods. Renew. Sustain. Energy Rev. 2021, 135, 110192. [Google Scholar] [CrossRef]
- Wang, M.; Wang, G.; Sun, Z.; Zhang, Y.; Xu, D. Review of renewable energy-based hydrogen production processes for sustainable energy innovation. Glob. Energy Interconnect. 2019, 2, 436–443. [Google Scholar] [CrossRef]
- Chi, J.; Yu, H. Water electrolysis based on renewable energy for hydrogen production. Chin. J. Catal. 2018, 39, 390–394. [Google Scholar] [CrossRef]
- Sahiner, N. Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Prog. Polym. Sci. 2013, 38, 1329–1356. [Google Scholar] [CrossRef]
- Dincer, I.; Acar, C. Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrogen Energy 2015, 40, 11094–11111. [Google Scholar] [CrossRef]
- Li, Q.; Kim, H. Hydrogen production from NaBH4 hydrolysis via Co-ZIF-9 catalyst. Fuel Process. Technol. 2012, 100, 43–48. [Google Scholar] [CrossRef]
- Li, R.; Zhang, F.; Zhang, J.; Dong, H. Catalytic hydrolysis of NaBH4 over titanate nanotube supported Co for hydrogen production. Int. J. Hydrogen Energy 2022, 47, 5260–5268. [Google Scholar] [CrossRef]
- Demirci, S.; Sahiner, N. Superior reusability of metal catalysts prepared within poly(ethylene imine) microgels for H2 production from NaBH4 hydrolysis. Fuel Process. Technol. 2014, 127, 88–96. [Google Scholar] [CrossRef]
- Chen, W.; Lv, G.; Fu, J.; Ren, H.; Shen, J.; Cao, J.; Liu, X. Demonstration of Controlled Hydrogen Release Using Rh@GQDs during Hydrolysis of NH3BH3. ACS Appl. Mater. Interfaces 2021, 13, 50017–50026. [Google Scholar] [CrossRef]
- Jicsinszky, L.; Iványi, R. Catalytic transfer hydrogenation of sugar derivatives. Carbohydr. Polym. 2001, 45, 139–145. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, X.-Y.; Wu, H.; Lei, Y.-Z.; Li, J.-H. Highly efficient reduction of nitro compounds: Recyclable Pd/C-catalyzed transfer hydrogenation with ammonium formate or hydrazine hydrate as hydrogen source. Synth. Commun. 2018, 48, 2475–2484. [Google Scholar] [CrossRef]
- Zhang, J.; Hou, Q.; Guo, X.; Yang, X. Modified MgH2 Hydrogen Storage Properties Based on Grapefruit Peel-Derived Biochar. Catalysts 2022, 12, 517. [Google Scholar] [CrossRef]
- Pukazhselvan, D.; Shaula, A.L.; Mikhalev, S.M.; Bdikin, I.; Fagg, D.P. Elucidating Evidence for the In Situ Reduction of Graphene Oxide by Magnesium Hydride and the Consequence of Reduction on Hydrogen Storage. Catalysts 2022, 12, 735. [Google Scholar] [CrossRef]
- Chen, W.; Shen, J.; Huang, Y.; Liu, X.; Astruc, D. Catalyzed Hydrolysis of Tetrahydroxydiboron by Graphene Quantum Dot-Stabilized Transition-Metal Nanoparticles for Hydrogen Evolution. ACS Sustain. Chem. Eng. 2020, 8, 7513–7522. [Google Scholar] [CrossRef]
- Yang, K.; Wang, P.; Sun, Z.-Y.; Guo, M.; Zhao, W.; Tang, X.; Wang, G. Hydrogen-Bonding Controlled Nickel-Catalyzed Regioselective Cyclotrimerization of Terminal Alkynes. Org. Lett. 2021, 23, 3933–3938. [Google Scholar] [CrossRef] [PubMed]
- Dragan, M. Hydrogen Storage in Complex Metal Hydrides NaBH4: Hydrolysis Reaction and Experimental Strategies. Catalysts 2022, 12, 356. [Google Scholar] [CrossRef]
- Liao, J.; Wu, Y.; Feng, Y.; Hu, H.; Zhang, L.; Qiu, J.; Li, J.; Liu, Q.; Li, H. Boosted Catalytic Activity toward the Hydrolysis of Ammonia Borane by Mixing Co- and Cu-Based Catalysts. Catalysts 2022, 12, 426. [Google Scholar] [CrossRef]
- İzgi, M.S.; Şahin, Ö.; Onat, E.; Saka, C. Epoxy-activated acrylic particulate polymer-supported Co–Fe–Ru–B catalyst to produce H2 from hydrolysis of NH3BH3. Int. J. Hydrogen Energy 2020, 45, 22638–22648. [Google Scholar] [CrossRef]
- Kytsya, A.; Berezovets, V.; Verbovytskyy, Y.; Bazylyak, L.; Kordan, V.; Zavaliy, I.; Yartys, V.A. Bimetallic Ni-Co nanoparticles as an efficient catalyst of hydrogen generation via hydrolysis of NaBH4. J. Alloys Compd. 2022, 908, 164484. [Google Scholar] [CrossRef]
- Kojima, Y.; Kawai, Y.; Nakanishi, H.; Matsumoto, S. Compressed hydrogen generation using chemical hydride. J. Power Sources 2004, 135, 36–41. [Google Scholar] [CrossRef]
- Zhao, J.; Shi, J.; Zhang, X.; Cheng, F.; Liang, J.; Tao, Z.; Chen, J. A Soft Hydrogen Storage Material: Poly(Methyl Acrylate)-Confined Ammonia Borane with Controllable Dehydrogenation. Adv. Mater. 2010, 22, 394–397. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, H.N. A review on hydrogen generation from the hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 2021, 46, 726–765. [Google Scholar] [CrossRef]
- Zhu, Q.-L.; Xu, Q. Immobilization of Ultrafine Metal Nanoparticles to High-Surface-Area Materials and Their Catalytic Applications. Chem 2016, 1, 220–245. [Google Scholar] [CrossRef]
- Khalily, M.A.; Eren, H.; Akbayrak, S.; Susapto, H.H.; Biyikli, N.; Özkar, S.; Guler, M.O. Facile Synthesis of Three-Dimensional Pt-TiO 2 Nano-networks: A Highly Active Catalyst for the Hydrolytic Dehydrogenation of Ammonia-Borane. Angew. Chem. 2016, 128, 12445–12449. [Google Scholar] [CrossRef]
- Balčiūnaitė, A.; Sukackienė, Z.; Antanavičiūtė, K.; Vaičiūnienė, J.; Naujokaitis, A.; Tamašauskaitė-Tamašiūnaitė, L.; Norkus, E. Investigation of hydrogen generation from sodium borohydride using different cobalt catalysts. Int. J. Hydrogen Energy 2021, 46, 1989–1996. [Google Scholar] [CrossRef]
- Glavee, G.N.; Klabunde, K.J.; Sorensen, C.M.; Hadjipanayis, G.C. Sodium borohydride reduction of cobalt ions in nonaqueous media. Formation of ultrafine particles (nanoscale) of cobalt metal. Inorg. Chem. 1993, 32, 474–477. [Google Scholar] [CrossRef]
- Glavee, G.N.; Klabunde, K.J.; Sorensen, C.M.; Hadjipanayis, G.C. Borohydride Reduction of Nickel and Copper Ions in Aqueous and Nonaqueous Media. Controllable Chemistry Leading to Nanoscale Metal and Metal Boride Particles. Langmuir 1994, 10, 4726–4730. [Google Scholar] [CrossRef]
- Glavee, G.N.; Klabunde, K.J.; Sorensen, C.M.; Hadjipanayis, G.C. Borohydride reduction of cobalt ions in water. Chemistry leading to nanoscale metal, boride, or borate particles. Langmuir 1993, 9, 162–169. [Google Scholar] [CrossRef]
- Glavee, G.N.; Klabunde, K.J.; Sorensen, C.M.; Hadjipanayis, G.C. Chemistry of Borohydride Reduction of Iron(II) and Iron(III) Ions in Aqueous and Nonaqueous Media. Formation of Nanoscale Fe, FeB, and Fe2B Powders. Inorg. Chem. 1995, 34, 28–35. [Google Scholar] [CrossRef]
- He, L.; Weniger, F.; Neumann, H.; Beller, M. Synthesis, Characterization, and Application of Metal Nanoparticles Supported on Nitrogen-Doped Carbon: Catalysis beyond Electrochemistry. Angew. Chem. Int. Ed. 2016, 55, 12582–12594. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, N.; Wang, Y.; Xuan, X.; Yang, X.; Zhou, J. Nitrogen-doped microporous carbon material decorated with metal nanoparticles derived from solid Zn/Co zeolitic imidazolate framework with high selectivity for CO2 separation. Fuel 2020, 265, 116972. [Google Scholar] [CrossRef]
- Fukuoka, A.; Araki, H.; Sakamoto, Y.; Sugimoto, N.; Tsukada, H.; Kumai, Y.; Akimoto, Y.; Ichikawa, M. Template Synthesis of Nanoparticle Arrays of Gold and Platinum in Mesoporous Silica Films. Nano Lett. 2002, 2, 793–795. [Google Scholar] [CrossRef]
- Davidson, M.; Ji, Y.; Leong, G.J.; Kovach, N.C.; Trewyn, B.G.; Richards, R.M. Hybrid Mesoporous Silica/Noble-Metal Nanoparticle Materials—Synthesis and Catalytic Applications. ACS Appl. Nano Mater. 2018, 1, 4386–4400. [Google Scholar] [CrossRef]
- Glotov, A.; Vutolkina, A.; Pimerzin, A.; Vinokurov, V.; Lvov, Y. Clay nanotube-metal core/shell catalysts for hydroprocesses. Chem. Soc. Rev. 2021, 50, 9240–9277. [Google Scholar] [CrossRef]
- Zhou, C.H. An overview on strategies towards clay-based designer catalysts for green and sustainable catalysis. Appl. Clay Sci. 2011, 53, 87–96. [Google Scholar] [CrossRef]
- Peron, D.V.; Zholobenko, V.L.; de la Rocha, M.R.; Oberson de Souza, M.; Feris, L.A.; Marcilio, N.R.; Ordomsky, V.V.; Khodakov, A.Y. Nickel–zeolite composite catalysts with metal nanoparticles selectively encapsulated in the zeolite micropores. J. Mater. Sci. 2019, 54, 5399–5411. [Google Scholar] [CrossRef]
- Juneau, M.; Liu, R.; Peng, Y.; Malge, A.; Ma, Z.; Porosoff, M.D. Characterization of Metal-zeolite Composite Catalysts: Determining the Environment of the Active Phase. ChemCatChem 2020, 12, 1826–1852. [Google Scholar] [CrossRef]
- Demirci, S.; Yildiz, M.; Inger, E.; Sahiner, N. Porous carbon particles as metal-free superior catalyst for hydrogen release from methanolysis of sodium borohydride. Renew. Energy 2020, 147, 69–76. [Google Scholar] [CrossRef]
- Rajan, A.S.; Sampath, S.; Shukla, A.K. An in situ carbon-grafted alkaline iron electrode for iron-based accumulators. Energy Environ. Sci. 2014, 7, 1110. [Google Scholar] [CrossRef]
- Liu, F.; Li, H.; Liao, D.; Xu, Y.; Yu, M.; Deng, S.; Zhang, G.; Xiao, T.; Long, J.; Zhang, H.; et al. Carbon quantum dots derived from the extracellular polymeric substance of anaerobic ammonium oxidation granular sludge for detection of trace Mn(vii) and Cr(vi). RSC Adv. 2020, 10, 32249–32258. [Google Scholar] [CrossRef]
- Feng, J.; Zong, Y.; Sun, Y.; Zhang, Y.; Yang, X.; Long, G.; Wang, Y.; Li, X.; Zheng, X. Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance. Chem. Eng. J. 2018, 345, 441–451. [Google Scholar] [CrossRef]
- Shen, Z.; Zu, Y.; Chen, Y.; Gong, J.; Sun, C. Microwave absorption performance of porous carbon particles modified by nickel with different morphologies. J. Mater. Sci. Technol. 2023, 137, 79–90. [Google Scholar] [CrossRef]
- Cheirmadurai, K.; Biswas, S.; Murali, R.; Thanikaivelan, P. Green synthesis of copper nanoparticles and conducting nanobiocomposites using plant and animal sources. RSC Adv. 2014, 4, 19507. [Google Scholar] [CrossRef]
- Khan, A.; Rashid, A.; Younas, R.; Chong, R. A chemical reduction approach to the synthesis of copper nanoparticles. Int. Nano Lett. 2016, 6, 21–26. [Google Scholar] [CrossRef]
- Ari, B.; Inger, E.; Sunol, A.K.; Sahiner, N. Optimized Porous Carbon Particles from Sucrose and Their Polyethyleneimine Modifications for Enhanced CO2 Capture. J. Compos. Sci. 2024, 8, 338. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, S.; Ma, Z.; Kundu, M.; Tang, B.; Li, J.; Wang, X. Oxygen vacancies engineered self-supported B doped Co3O4 nanowires as an efficient multifunctional catalyst for electrochemical water splitting and hydrolysis of sodium borohydride. Chem. Eng. J. 2021, 404, 126474. [Google Scholar] [CrossRef]
- Li, J.; Hong, X.; Wang, Y.; Luo, Y.; Huang, P.; Li, B.; Zhang, K.; Zou, Y.; Sun, L.; Xu, F.; et al. Encapsulated cobalt nanoparticles as a recoverable catalyst for the hydrolysis of sodium borohydride. Energy Storage Mater. 2020, 27, 187–197. [Google Scholar] [CrossRef]
- Peng, C.; Li, T.; Zou, Y.; Xiang, C.; Xu, F.; Zhang, J.; Sun, L. Bacterial cellulose derived carbon as a support for catalytically active Co–B alloy for hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 2021, 46, 666–675. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, G.; Zhang, L.; Wang, W.; Miao, W.; Chen, K.; Cheng, L.; Li, Y.; Han, S. Ultrafine cobalt nanoparticles supported on carbon nanospheres for hydrolysis of sodium borohydride. Renew. Energy 2020, 162, 345–354. [Google Scholar] [CrossRef]
- Yao, L.; Li, X.; Peng, W.; Yao, Q.; Xia, J.; Lu, Z.H. Co-CeO: Xnanoparticles anchored on a nitrogen-doped carbon nanosheet: A synergistic effect for highly efficient hydrolysis of sodium borohydride. Inorg. Chem. Front. 2021, 8, 1056–1065. [Google Scholar] [CrossRef]
- Shen, J.; Xu, D.; Ji, J.; Zhang, Q.; Fan, X. In situ evolved defective TiO2 as robust support for CoB-catalyzed hydrolysis of NaBH4. Int. J. Hydrogen Energy 2023, 48, 1001–1010. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, G.; Yin, J.; Chen, J.; Tang, C.; Liu, C.; Li, Q.; Wang, T.; Li, F.; Yao, C.; et al. Photo-thermal synergic enhancement of Co FeAl-LDHs for hydrogen generation from hydrolysis of NaBH4. Appl. Surf. Sci. 2023, 610, 155325. [Google Scholar] [CrossRef]
- Mirshafiee, F.; Rezaei, M. Co/Fe3O4@GO catalyst for one-step hydrogen generation from hydrolysis of NaBH4: Optimization and kinetic study. Int. J. Hydrogen Energy 2023, 48, 32356–32370. [Google Scholar] [CrossRef]
- Ren, J.; Ma, J.; Xu, F.; Zhang, D.; Zhang, K.; Cao, Z.; Wu, S.; Sun, Q.; Wang, Y.; Li, G. Hydrogen generation from hydrolysis of NaBH4 solution with efficient g-C3N4/Co–Mo–B/Ni foam catalyst. Int. J. Hydrogen Energy 2024, 50, 1213–1222. [Google Scholar] [CrossRef]
- Eom, K.S.; Kim, M.J.; Kim, R.H.; Nam, D.H.; Kwon, H.S. Characterization of hydrogen generation for fuel cells via borane hydrolysis using an electroless-deposited Co-P/Ni foam catalyst. J. Power Sources 2010, 195, 2830–2834. [Google Scholar] [CrossRef]
- Yan, J.; Liao, J.; Li, H.; Wang, H.; Wang, R. Magnetic field induced synthesis of amorphous CoB alloy nanowires as a highly active catalyst for hydrogen generation from ammonia borane. Catal. Commun. 2016, 84, 124–128. [Google Scholar] [CrossRef]
- Dai, H.B.; Gao, L.L.; Liang, Y.; Kang, X.D.; Wang, P. Promoted hydrogen generation from ammonia borane aqueous solution using cobalt-molybdenum-boron/nickel foam catalyst. J. Power Sources 2010, 195, 307–312. [Google Scholar] [CrossRef]
- Xu, P.; Lu, W.; Zhang, J.; Zhang, L. Efficient Hydrolysis of Ammonia Borane for Hydrogen Evolution Catalyzed by Plasmonic Ag@Pd Core-Shell Nanocubes. ACS Sustain. Chem. Eng. 2020, 8, 12366–12377. [Google Scholar] [CrossRef]
- He, Y.; Peng, Y.; Wang, Y.; Long, Y.; Fan, G. Air-engaged fabrication of nitrogen-doped carbon skeleton as an excellent platform for ultrafine well-dispersed RuNi alloy nanoparticles toward efficient hydrolysis of ammonia borane. Fuel 2021, 297, 120750. [Google Scholar] [CrossRef]
- Demirci, S.; Yildiz, M.; Sahiner, N. Phosphazene-based covalent organic polymers as metal-free catalysts with improved H2 generation from NaBH4 in methanol with superior catalytic activity and re-generation ability. J. Environ. Chem. Eng. 2024, 12, 112066. [Google Scholar] [CrossRef]
- Demirci, S.; Sunol, A.K.; Sahiner, N. Catalytic activity of amine functionalized titanium dioxide nanoparticles in methanolysis of sodium borohydride for hydrogen generation. Appl. Catal. B Environ. 2020, 261, 118242. [Google Scholar] [CrossRef]
- Ari, B.; Sunol, A.K.; Sahiner, N. Highly re-usable porous carbon-based particles as adsorbents for the development of CO2 capture technologies. J. CO2 Util. 2024, 82, 102767. [Google Scholar] [CrossRef]
Composite | Amount of Metal Nanoparticles (mg/g) | ||
---|---|---|---|
Co | Ni | Cu | |
@PCP | 19.2 ± 0.9 | 13.9 ± 1.0 | 31.3 ± 1.9 |
@PCP-PEI | 29.8 ± 1.1 | 48.2 ± 2.4 | 90.4 ± 3.2 |
Number of loading/reducing cycle | |||
1st | 2nd | 3rd | |
Co@PCP-PEI | 29.8 ± 1.1 | 35.6 ± 2.2 | 44.3 ± 4.9 |
Catalyst | Hydrolysis Reaction of | Activation Parameters | [REF] | ||
---|---|---|---|---|---|
Ea (kJ/mol) | ΔH (kJ/mol) | ΔS (J/mol.K) | |||
Co@PCP | NaBH4 | 29.3 | 26.1 | −182.9 | This study |
B-doped Co3O4 | NaBH4 | 29.7 | - | - | [52] |
Co@NMGC | NaBH4 | 35.2 | - | - | [53] |
BC/Co-B | NaBH4 | 56.4 | - | - | [54] |
CNSs@Co | NaBH4 | 40.8 | - | - | [55] |
Co-CeOx/NCNS | NaBH4 | 44.2 | - | - | [56] |
CoB/TiO2-x | NaBH4 | 57.0 | - | - | [57] |
Co6FeAl-LDH | NaBH4 | 35.5 | - | - | [58] |
Co(30%)/Fe3O4@GO | NaBH4 | 44.4 | - | - | [59] |
g-C3N4/Co–Mo–B/Ni | NaBH4 | 52.6 | - | - | [60] |
Co@PCP | NH3BH3 | 32.5 | 29.2 | −196.3 | This study |
Co–P/Ni | NH3BH3 | 48.0 | - | - | [61] |
CoB | NH3BH3 | 16.2 | - | - | [62] |
Co–Mo–B/Ni | NH3BH3 | 44.3 | - | - | [63] |
Ag@Pd | NH3BH3 | 50.1 | - | - | [64] |
Ru1Ni1.90/NCS | NH3BH3 | 26.5 | - | - | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demirci, S.; Polat, O.; Sahiner, N. Hydrogen Production from Chemical Hydrides via Porous Carbon Particle Composite Catalyst Embedding of Metal Nanoparticles. Micromachines 2025, 16, 172. https://doi.org/10.3390/mi16020172
Demirci S, Polat O, Sahiner N. Hydrogen Production from Chemical Hydrides via Porous Carbon Particle Composite Catalyst Embedding of Metal Nanoparticles. Micromachines. 2025; 16(2):172. https://doi.org/10.3390/mi16020172
Chicago/Turabian StyleDemirci, Sahin, Osman Polat, and Nurettin Sahiner. 2025. "Hydrogen Production from Chemical Hydrides via Porous Carbon Particle Composite Catalyst Embedding of Metal Nanoparticles" Micromachines 16, no. 2: 172. https://doi.org/10.3390/mi16020172
APA StyleDemirci, S., Polat, O., & Sahiner, N. (2025). Hydrogen Production from Chemical Hydrides via Porous Carbon Particle Composite Catalyst Embedding of Metal Nanoparticles. Micromachines, 16(2), 172. https://doi.org/10.3390/mi16020172