Point-of-Care Diabetes Diagnostics: Towards a Self-Powered Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Apparatus
2.3. Electrochemical Procedures
2.4. Electrodes Preparation
2.4.1. Anode
2.4.2. Cathode
2.5. Biofuel Cell SETUP
3. Results
3.1. Qualitative Analyses of the Nanomaterial’s
3.2. Electrochemical Characterization of the Bgr- and PBNCs-GO-Based Biosensors
3.3. Analytical Performance of the Electrodes
3.3.1. Bgr-Based Sensor
3.3.2. PBNCs-GO-Based Sensor
3.4. Spiked Serum Samples Analysis of the Bgr-Based Sensor
3.5. Proof of Concept of the Biofuel Cell Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Willner, I. Biomaterials for sensors, fuel cells, and circuitry. Science 2002, 298, 2407–2408. [Google Scholar] [CrossRef] [PubMed]
- Barton, S.C.; Gallaway, J.; Atanassov, P. Enzymatic biofuel cells for Implantable and microscale devices. Chem. Rev. 2004, 104, 4867–4886. [Google Scholar] [CrossRef] [PubMed]
- Cracknell, J.A.; Vincent, K.A.; Armstrong, F.A. Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem. Rev. 2008, 108, 2439–2461. [Google Scholar] [CrossRef]
- Heller, A. Miniature biofuel cells. Phys. Chem. Chem. Phys. 2004, 6, 209–216. [Google Scholar] [CrossRef]
- du Toit, H.; Di Lorenzo, M. Continuous power generation from glucose with two different miniature flow-through enzymatic biofuel cells. Biosens. Bioelectron. 2015, 69, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.D.; Turner, A.P.F. Home blood glucose biosensors: A commercial perspective. Biosens. Bioelectron. 2005, 20, 2435–2453. [Google Scholar] [CrossRef] [PubMed]
- Sekretaryova, A.N.; Beni, V.; Eriksson, M.; Karyakin, A.A.; Turner, A.P.F.; Vagin, M.Y. Cholesterol Self-Powered Biosensor. Anal. Chem. 2014, 86, 9540–9547. [Google Scholar] [CrossRef]
- Babadi, A.A.; Bagheri, S.; Hamid, S.B.A. Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement. Biosens. Bioelectron. 2016, 79, 850–860. [Google Scholar] [CrossRef]
- Wen, D.; Deng, L.; Guo, S.; Dong, S. Self-Powered Sensor for Trace Hg2+ Detection. Anal. Chem. 2011, 83, 3968–3972. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Chen, C.; Zhou, M.; Guo, S.; Wang, E.; Dong, S. Integrated Self-Powered Microchip Biosensor for Endogenous Biological Cyanide. Anal. Chem. 2010, 82, 4283–4287. [Google Scholar] [CrossRef] [PubMed]
- Katz, E.; Buckmann, A.F.; Willner, I. Self-powered enzyme-based biosensors. J. Am. Chem. Soc. 2001, 123, 10752–10753. [Google Scholar] [CrossRef]
- Jia, W.; Wang, X.; Imani, S.; Bandodkar, A.J.; Ramirez, J.; Mercier, P.P.; Wang, J. Wearable textile biofuel cells for powering electronics. J. Mater. Chem. A 2014, 2, 18184–18189. [Google Scholar] [CrossRef]
- Leech, D.; Kavanagh, P.; Schuhmann, W. Enzymatic fuel cells: Recent progress. Electrochim. Acta 2012, 84, 223–234. [Google Scholar] [CrossRef]
- Ivanov, I.; Vidakovic-Koch, T.; Sundmacher, K. Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling. Energies 2010, 3, 803–846. [Google Scholar] [CrossRef]
- Gonzalez-Solino, C.; Di Lorenzo, M. Enzymatic Fuel Cells: Towards Self-Powered Implantable and Wearable Diagnostics. Biosensors 2018, 8, 11. [Google Scholar] [CrossRef]
- Shoji, K.; Akiyama, Y.; Suzuki, M.; Nakamura, N.; Ohno, H.; Morishima, K. Biofuel cell backpacked insect and its application to wireless sensing. Biosens. Bioelectron. 2016, 78, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Halamkova, L.; Halamek, J.; Bocharova, V.; Szczupak, A.; Alfonta, L.; Katz, E. Implanted Biofuel Cell Operating in a Living Snail. J. Am. Chem. Soc. 2012, 134, 5040–5043. [Google Scholar] [CrossRef] [PubMed]
- Zebda, A.; Cosnier, S.; Alcaraz, J.P.; Holzinger, M.; Le Goff, A.; Gondran, C.; Boucher, F.; Giroud, F.; Gorgy, K.; Lamraoui, H.; et al. Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices. Sci. Rep. 2013, 3, 1516. [Google Scholar] [CrossRef]
- Pankratov, D.; Ohlsson, L.; Gudmundsson, P.; Halak, S.; Ljunggren, L.; Blum, Z.; Shleev, S. Ex vivo electric power generation in human blood using an enzymatic fuel cell in a vein replica. RSC Adv. 2016, 6, 70215–70220. [Google Scholar] [CrossRef]
- Sharifi, M.; Pothu, R.; Boddula, R.; Bardajee, G.R. Trends of biofuel cells for smart biomedical devices. Int. J. Hydrog. Energy 2021, 46, 3220–3229. [Google Scholar] [CrossRef]
- Zloczewska, A.; Celebanska, A.; Szot, K.; Tomaszewska, D.; Opallo, M.; Jönsson-Niedziolka, M. Self-powered biosensor for ascorbic acid with a Prussian blue electrochromic display. Biosens. Bioelectron. 2014, 54, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Shitanda, I.; Takamatsu, K.; Niiyama, A.; Mikawa, T.; Hoshi, Y.; Itagaki, M.; Tsujimura, S. High-power lactate/O2 enzymatic biofuel cell based on carbon cloth electrodes modified with MgO-templated carbon. J. Power Sources 2019, 436, 226844. [Google Scholar] [CrossRef]
- Roy, B.G.; Rutherford, J.L.; Weaver, A.E.; Beaver, K.; Rasmussen, M. A Self-Powered Biosensor for the Detection of Glutathione. Biosensors 2020, 10, 114. [Google Scholar] [CrossRef] [PubMed]
- Moreira, F.T.C.; Sale, M.G.F.; Di Lorenzo, M. Towards timely Alzheimer diagnosis: A self-powered amperometric biosensor for the neurotransmitter acetylcholine. Biosens. Bioelectron. 2017, 87, 607–614. [Google Scholar] [CrossRef]
- Wang, Y.H.; Ge, L.; Wang, P.P.; Yan, M.; Yu, J.H.; Ge, S.G. A three-dimensional origami-based immuno-biofuel cell for self-powered, low-cost, and sensitive point-of-care testing. Chem. Commun. 2014, 50, 1947–1949. [Google Scholar] [CrossRef]
- International Diabetes Federation. Available online: https://idf.org/about-diabetes/diabetes-facts-figures/ (accessed on 18 November 2024).
- Hu, F.B. Globalization of Diabetes The role of diet, lifestyle, and genes. Diabetes Care 2011, 34, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Young, F.; Critchley, J.A.; Johnstone, L.K.; Unwin, N.C. A review of co-morbidity between infectious and chronic disease in Sub Saharan Africa: TB and Diabetes Mellitus, HIV and Metabolic Syndrome, and the impact of globalization. Glob. Health 2009, 5, 9. [Google Scholar] [CrossRef]
- Chetty, V.K.; Narayan, V. Diabetes 2030: Impact of globalization. Diabetes 2006, 55, A268–A269. [Google Scholar]
- Newman, J.D.; Setford, S.J. Enzymatic biosensors. Mol. Biotechnol. 2006, 32, 249–268. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.P.; Lan, F.; He, Q.T.; Li, H.W.; Zhang, F.Y.; Qin, X.; Li, S. A Comparison Study Between Point-of-Care Testing Systems and Central Laboratory for Determining Blood Glucose in Venous Blood. J. Clin. Lab. Anal. 2017, 31, e22051. [Google Scholar] [CrossRef] [PubMed]
- Lovrencic, M.V.; Biljak, V.R.; Bozicevic, S.; Pape-Medvidovic, E.; Ljubic, S. Validation of Point-of-Care Glucose Testing for Diagnosis of Type 2 Diabetes. Int. J. Endocrinol. 2013, 2013, 206309. [Google Scholar] [CrossRef]
- DuBois, J.A.; Malic, A. The StatStrip Glucose Hospital Meter System Point-of-Care Testing in Critically Ill Patients. Point Care 2017, 16, 51–54. [Google Scholar] [CrossRef]
- Aloisio, E.; Frusciante, E.; Dolci, A.; Panteghini, M. Verification of accuracy of 3 glucose point-of-care testing (POCT) devices for their use in a hospital setting. Biochim. Clin. 2017, 41, 79–84. [Google Scholar] [CrossRef]
- Fung, K.K.; Chan, C.P.Y.; Renneberg, R. Development of enzyme-based bar code-style lateral-flow assay for hydrogen peroxide determination. Anal. Chim. Acta 2009, 634, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Scimio, K.; Carter, C.; El-Oshar, S. Point-of-Care Glucose Testing in Critically Ill Patients. Crit. Care Med. 2018, 46, 202. [Google Scholar] [CrossRef]
- Hu, Z.Q.; Kang, Z.P.; Yu, C.; Wang, B.; Jiao, S.Q.; Peng, R.Y. Direct Electron Transfer of Glucose Oxidase in Carbon Paper for Biofuel Cells and Biosensors. Int. J. Electrochem. Sci. 2017, 12, 7103–7120. [Google Scholar] [CrossRef]
- Wang, J. Electrochemical glucose biosensors. Chem. Rev. 2008, 108, 814–825. [Google Scholar] [CrossRef] [PubMed]
- Krikstolaityte, V.; Oztekin, Y.; Kuliesius, J.; Ramanaviciene, A.; Yazicigil, Z.; Ersoz, M.; Okumus, A.; Kausaite-Minkstimiene, A.; Kilic, Z.; Solak, A.O.; et al. Biofuel Cell Based on Anode and Cathode Modified by Glucose Oxidase. Electroanalysis 2013, 25, 2677–2683. [Google Scholar] [CrossRef]
- Cao, L.Y.; Liu, Y.L.; Zhang, B.H.; Lu, L.H. In situ Controllable Growth of Prussian Blue Nanocubes on Reduced Graphene Oxide: Facile Synthesis and Their Application as Enhanced Nanoelectrocatalyst for H2O2 Reduction. Acs Appl. Mater. Interfaces 2010, 2, 2339–2346. [Google Scholar] [CrossRef] [PubMed]
- Bollella, P.; Fusco, G.; Stevar, D.; Gorton, L.; Ludwig, R.; Ma, S.; Boer, H.; Koivula, A.; Tortolini, C.; Favero, G.; et al. A Glucose/Oxygen Enzymatic Fuel Cell based on Gold Nanoparticles modified Graphene Screen-Printed Electrode. Proof-of-Concept in Human Saliva. Sens. Actuators B-Chem. 2018, 256, 921–930. [Google Scholar] [CrossRef]
- du Toit, H.; Di Lorenzo, M. Electrodeposited highly porous gold microelectrodes for the direct electrocatalytic oxidation of aqueous glucose. Sens. Actuators B-Chem. 2014, 192, 725–729. [Google Scholar] [CrossRef]
- Xu, C.; Ren, J.; Feng, L.; Qu, X. H2O2 triggered sol-gel transition used for visual detection of glucose. Chem. Commun. 2012, 48, 3739–3741. [Google Scholar] [CrossRef]
- Promsuwan, K.; Soleh, A.; Samoson, K.; Saisahas, K.; Wangchuk, S.; Saichanapan, J.; Kanatharana, P.; Thavarungkul, P.; Limbut, W. Novel biosensor platform for glucose monitoring via smartphone based on battery-less NFC potentiostat. Talanta 2023, 256, 124266. [Google Scholar] [CrossRef] [PubMed]
[Glucose], mmol/L Added | Error (%) | Recovery (%) |
---|---|---|
1.0 | 7.5 | 92.5 |
2.5 | 6.0 | 94.0 |
5.0 | 8.5 | 91.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinagre, I.; Martins, G.V.; Alves, J.A.; Moreira, F.T.C. Point-of-Care Diabetes Diagnostics: Towards a Self-Powered Sensor. Micromachines 2025, 16, 134. https://doi.org/10.3390/mi16020134
Vinagre I, Martins GV, Alves JA, Moreira FTC. Point-of-Care Diabetes Diagnostics: Towards a Self-Powered Sensor. Micromachines. 2025; 16(2):134. https://doi.org/10.3390/mi16020134
Chicago/Turabian StyleVinagre, Inês, Gabriela V. Martins, Joaquim A. Alves, and Felismina T.C. Moreira. 2025. "Point-of-Care Diabetes Diagnostics: Towards a Self-Powered Sensor" Micromachines 16, no. 2: 134. https://doi.org/10.3390/mi16020134
APA StyleVinagre, I., Martins, G. V., Alves, J. A., & Moreira, F. T. C. (2025). Point-of-Care Diabetes Diagnostics: Towards a Self-Powered Sensor. Micromachines, 16(2), 134. https://doi.org/10.3390/mi16020134