Ultra-Wideband Double-Pentagonal Fractal Antenna for C-, X-, Ku- and K-Band Wireless Applications
Abstract
1. Introduction
2. Proposed Wideband Fractal Antenna Design and Simulation
2.1. Fractal Antenna Design Process
2.2. Antenna Simulation
2.3. Parametric Study
3. Fabrication and Measurement
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, J.; Wi, S.; Lee, H.; Li, R.; Shin, H.; Kim, H.-H.; Kim, H. Antenna Sensitivity Enhancement through Noise Suppression in an LTE/GPS Communication Module. J. Electromagn. Eng. Sci. 2025, 25, 304–306. [Google Scholar] [CrossRef]
- Awan, D.; Bashir, S.; Bari, I.; Bashir, M.A.; Ali, H.; Ibrahim, I.M.; Kiani, S.H.; Savci, H.S.; Zakaria, Z. A Circular Shape Arc Slot Ultra-Wideband Antenna for Biomedical Applications. J. Electromagn. Eng. Sci. 2024, 24, 418–425. [Google Scholar] [CrossRef]
- Li, R.; Qu, L.; Kim, H. Compact MIMO Antenna Design Using the Wideband Ground-Radiation Technique for 5G Terminals. J. Electromagn. Eng. Sci. 2024, 24, 89–97. [Google Scholar] [CrossRef]
- Wang, M.; Chang, L.; Li, Q.; Zhang, A. Modified Inverted-L Antenna with Improved Upper Hemisphere Ratio and Ground-Independent Performance for Augmented Mobile Satellite Service. IEEE Trans. Antennas Propag. 2025, 73, 6020–6025. [Google Scholar] [CrossRef]
- Li, K.; Zhao, D.; Chen, Z.; Jiang, S.; Wang, X.; You, X. K-/Ka-Band Shared-Aperture Integrated Phased Array for Satellite Ground Terminals. IEEE Trans. Antennas Propag. 2025, 73, 5548–5558. [Google Scholar] [CrossRef]
- Zhang, R.; Ren, W.; Xue, Z.; Li, W.; Tian, H. Ultra-Wideband Tightly Coupled Antenna Based on Composite Dual-Line Feeding. IEEE Antennas Wirel. Propag. Lett. 2025, 24, 2024–2028. [Google Scholar] [CrossRef]
- Wang, J.; Wu, F.; Jiang, Z.H.; Luk, K.M. Millimeter-Wave Endfire Magnetoelectric Dipole Antenna and Array with Horizontal Polarization and Wide Bandwidth. IEEE Trans. Antennas Propag. 2024, 72, 3886–3895. [Google Scholar] [CrossRef]
- Mousa Ali, E.; Gunamony, S.L.; Alawad, M.A.; Alharbi, T.E. Compact, Broadband, and High-Gain Four-Port MIMO Antenna for Future Millimeter Wave Applications. Micromachines 2025, 16, 558. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Y.; Zhang, L.; Li, M. Design of Miniaturized and Wideband Four-Port MIMO Antenna Pair for WiFi. Micromachines 2024, 15, 850. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, Z.; Hu, B.; Chen, Z.; Liao, S.; Li, B. Wideband Omnidirectional Antenna Featuring Small Azimuthal Gain Variation. Micromachines 2023, 14, 2218. [Google Scholar] [CrossRef]
- Hu, R.; Zhang, F.; Ye, S.; Fang, G. Ultra-Wideband and High-Gain Vivaldi Antenna with Artificial Electromagnetic Materials. Micromachines 2023, 14, 1329. [Google Scholar] [CrossRef] [PubMed]
- Amador, M.; Rouco, A.; Albuquerque, D.; Pinho, P. Overview of Vivaldi Antenna Selection for Through-Wall Radar Applications. Sensors 2024, 24, 6536. [Google Scholar] [CrossRef]
- Tahar, Z.; Dérobert, X.; Benslama, M. An Ultra-Wideband Modified Vivaldi Antenna Applied to Ground and Through the Wall Imaging. Prog. Electromagn. Res. 2018, 86, 111–122. [Google Scholar] [CrossRef]
- Abdulhameed, A.A.; Kubík, Z. Review of Printed Log-Periodic Dipole Array Antenna Design for EMC Applications. Inventions 2025, 10, 34. [Google Scholar] [CrossRef]
- Abdulhameed, A.A.; Kubík, Z. Design a Compact Printed Log-Periodic Biconical Dipole Array Antenna for EMC Measurements. Electronics 2022, 11, 2877. [Google Scholar] [CrossRef]
- Moosazadeh, M.; Kharkovsky, S.; Case, J.T.; Samali, B. Miniaturized UWB Antipodal Vivaldi Antenna and Its Application for Detection of Void Inside Concrete Specimens. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1317–1320. [Google Scholar] [CrossRef]
- Elmobarak Elobaid, H.A.; Abdul Rahim, S.K.; Himdi, M.; Castel, X.; Abedian Kasgari, M. A Transparent and Flexible Polymer-Fabric Tissue UWB Antenna for Future Wireless Networks. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1333–1336. [Google Scholar] [CrossRef]
- Wemer, D.H.; Gauguly, S. An Overview of Fractal Antenna Engineering Research. IEEE Antennas Propag. Mag. 2003, 45, 38–57. [Google Scholar] [CrossRef]
- Garu, P.; Wang, W.C. Design and Analysis of a PDLC-Based Reconfigurable Hilbert Fractal Antenna for Large and Fine THz Frequency Tuning. Micromachines 2022, 13, 964. [Google Scholar] [CrossRef]
- Venneri, F.; Costanzo, S.; Borgia, A. Fractal Metasurfaces and Antennas: An Overview for Advanced Applications in Wireless Communications. Appl. Sci. 2024, 14, 2843. [Google Scholar] [CrossRef]
- Choi, W.M.; Jeong, T.; Lee, D.H.; Kim, J.H.; Lee, D.G.; Hwang, K.C. Miniaturised Ultra-Wideband Circular Polarised Koch Fractal Crossed Dipole Array. IET Microw. Antennas Propag. 2024, 18, 731–747. [Google Scholar] [CrossRef]
- Elabd, R.H.; Al-Gburi, A.J.A. Design and Optimization of a Circular Ring-Shaped UWB Fractal Antenna for Wireless Multi-Band Applications Using Particle Swarm Optimization. Prog. Electromagn. Res. B 2024, 106, 101–112. [Google Scholar] [CrossRef]
- Amirinalloo, S.; Atlasbaf, Z. A CPW-Fed Fractal Monopole Antenna with a Reduced Ground Plane in Frequency Range of 500 MHz–5.5 GHz. IET Microw. Antennas Propag. 2023, 17, 1006–1014. [Google Scholar] [CrossRef]
- Yassen, M.T.; Salim, A.J.; Hussan, M.R.; Ali, J.K. A Compact Dual-Band Dual-Polarized Antenna Based on Modified Minkowski Fractal. Prog. Electromagn. Res. C 2024, 140, 11–19. [Google Scholar] [CrossRef]
- Palanisamy, S.K.; Rubini, S.S.; Khalaf, O.I.; Hamam, H. Multi-Objective Hybrid Split-Ring Resonator and Electromagnetic Bandgap Structure-Based Fractal Antennas Using Hybrid Metaheuristic Framework for Wireless Applications. Sci. Rep. 2024, 14, 3288. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, S.K.; Vaddinuri, A.R.; Khan, A.A.; Faheem, M. Modeling of Inscribed Dual Band Circular Fractal Antenna for Wi-Fi Application Using Descartes Circle Theorem. Eng. Rep. 2025, 7, e13019. [Google Scholar] [CrossRef]
- Puri, S.C.; Das, S.; Tiary, M.G. A Multiband Antenna Using Plus-Shaped Fractal-like Elements and Stepped Ground Plane. Int. J. RF Microw. Comput.-Aided Eng. 2020, 30, e22169. [Google Scholar] [CrossRef]
- Marzouk, M.; Nejdi, I.H.; Youssef, R.; Barua, S.; Mohamed, S.; Ahmad, S.; Hussein, M. Efficient Broadband Fractal Antenna for WiMAX and WLAN. Heliyon 2024, 10, e26087. [Google Scholar] [CrossRef]
- Yaminisasi, G.; Pardhasaradhi, P.; Prasad, N.; Madhav, B.T.P.; Algarni, A.D.; Das, S.; El Ghzaoui, M. Fish-Tail Structured Fractal Monopole Printed Antenna with Dual Broadband Characteristics for Sub–6GHz 5G and X–Band Radar Applications. Fractal Fract. 2025, 9, 29. [Google Scholar] [CrossRef]
- Shankar, S.; Upadhyay, D.K. A Fractal Monopole Antenna with Dual Polarization Reconfigurable Characteristics for X-Band Applications. IEEE Access 2023, 11, 95667–95680. [Google Scholar] [CrossRef]
- Marzouk, M.; Rhazi, Y.; Nejdi, I.H.; Zerrad, F.E.; Saih, M.; Ahmad, S.; Ghaffar, A.; Hussein, M. Ultra-Wideband Compact Fractal Antenna for WiMAX, WLAN, C and X Band Applications. Sensors 2023, 23, 4254. [Google Scholar] [CrossRef]
- Nejdi, I.H.; Bri, S.; Marzouk, M.; Ahmad, S.; Rhazi, Y.; Ait Lafkih, M.; Sheikh, Y.A.; Ghaffar, A.; Hussein, M. UWB Circular Fractal Antenna with High Gain for Telecommunication Applications. Sensors 2023, 23, 4172. [Google Scholar] [CrossRef] [PubMed]
- Dhar, S.; Ghatak, R.; Gupta, B.; Poddar, D.R. A Wideband Minkowski Fractal Dielectric Resonator Antenna. IEEE Trans. Antennas Propag. 2013, 61, 2895–2903. [Google Scholar] [CrossRef]
- Kumar, A.; Dewan, B.; Khandelwal, A.; Shrivastava, K. On the Devolvement of Fractal Antenna for IoT Applications. Eng. Res. Express 2023, 5, 035026. [Google Scholar] [CrossRef]
- Ray, K.P. Design Aspects of Printed Monopole Antennas for Ultra-Wide Band Applications. Int. J. Antennas Propag. 2008, 1, 713858. [Google Scholar] [CrossRef]
- Das, S.; Mitra, D.; Chaudhuri, S.R.B. Staircase Fractal Loaded Microstrip Patch Antenna for Super Wide Band Operation. Prog. Electromagn. Res. C 2019, 95, 183–194. [Google Scholar] [CrossRef]
- Ojaroudi, N.; Ghadimi, N.; Ojaroudi, Y. Bandwidth Improvement of Omni-Directional Monopole Antenna with a Modified Ground Plane. Appl. Comput. Electromagn. Soc. J. 2014, 29, 328–334. [Google Scholar]
- Mirkamali, A.; Akhoondzadeh-Asl, L.; Hall, P.S.; Moussakhani, K. Modified Multiband Multiple Ring Monopole Antenna. Prog. Electromagn. Res. C 2010, 14, 173–183. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, G.M. A Novel Wideband Planar Ku-Band Array Antenna for Omnidirectional Radar. Microw. Opt. Technol. Lett. 2020, 62, 2902–2909. [Google Scholar] [CrossRef]
- Hassan, K.M.Z.; Wongkasem, N.; Foltz, H. A Ka-Band Omnidirectional Metamaterial-Inspired Antenna for Sensing Applications. Sensors 2025, 25, 3545. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.; Kim, D.K.; Choi, J.; Jung, K.Y. Numerical Study on the Feasibility of a 24 GHz ISM-Band Doppler Radar Antenna for Near-Field Sensing of Human Respiration in Electromagnetic Aspects. Appl. Sci. 2020, 10, 6159. [Google Scholar] [CrossRef]













| Element | Values (Ω, Iteration 0/1/2/3) | Element | Values (nH, Iteration 0/1/2/3) | Element | Values (pF, Iteration 0/1/2/3) | 
|---|---|---|---|---|---|
| 54/43.1/0.0226/11.03 | 4.97/5.75/1.242/198 | 0.214/0.036/0.07/8.4 | |||
| 47/32/30.1/48.6 | 3.1/4.1/0.018/18.75 | 0.02/0.0151/1.54/0.13 | |||
| 1.6/0.06/0.92/2.33 | 0.28/0.263/0.233/0.74 | 1.3/0.653/0.65/0.067 | |||
| 145/30.8/30.5/11 | 0.03722/0.45/1.97/0.02 | 7.95/0.83/0.119/13.1 | |||
| 102/32.9/17/20 | 0.047/0.05/0.012/0.012 | 2.16/2.23/23.9/4.76 | |||
| 71.1/80/43/32.5 | 2.1/0.096/0.0118/135.2 | 0.185/1.95/4.9/0.084 | |||
| 312/80/865/6 | 0.085/1.651/0.82/0.014 | 1.08/0.434/1.14/70 | |||
| 0.068/9.4/1.08/0.011 | 58.2/98.6/33.7/0.15 | 9.54/40.9/9.93/1.5 | |||
| -/-/-/18.5 | -/-/-/0.0106 | -/-/-/8 | |||
| -/-/-/0.00025 | -/-/-/0.064 | -/-/-/0.64 | 
| Ref. | Reflection Coefficient Bandwidth (GHz) | FBW 1 (%) | Peak Gain (dBi) | Antenna Size | 
|---|---|---|---|---|
| [24] | 1.6–1.96/3.16–3.55 | 20.2/11.6 | 2.09 | 0.266 × 0.266 × 0.008 | 
| [26] | 1.9–2.5/5–6 | 27.3/18.2 | 11.8 | N/A | 
| [27] | 1.63–1.88/4.5–8.5 | 14.2/30.7 | 5.05 | 0.147 × 0.272 × 0.008 | 
| [28] | 3.2–7.5 | 80.4 | 6.8 | 0.362 × 0.319 × 0.017 | 
| [31] | 2.26–4.1/6–9.82 | 57.8/48.3 | 9 | 0.3 × 0.255 × N/A | 
| [32] | 2.83–10.16 | 112.8 | 6.25 | 0.377 × 0.231 × 0.015 | 
| This work | 3.84–22.4 | 141.5 | 10.2 | 0.384 × 0.525 × 0.01 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Jang, T.; Lim, S. Ultra-Wideband Double-Pentagonal Fractal Antenna for C-, X-, Ku- and K-Band Wireless Applications. Micromachines 2025, 16, 1237. https://doi.org/10.3390/mi16111237
Kim J, Jang T, Lim S. Ultra-Wideband Double-Pentagonal Fractal Antenna for C-, X-, Ku- and K-Band Wireless Applications. Micromachines. 2025; 16(11):1237. https://doi.org/10.3390/mi16111237
Chicago/Turabian StyleKim, Junghyeon, Taehwan Jang, and Sungjoon Lim. 2025. "Ultra-Wideband Double-Pentagonal Fractal Antenna for C-, X-, Ku- and K-Band Wireless Applications" Micromachines 16, no. 11: 1237. https://doi.org/10.3390/mi16111237
APA StyleKim, J., Jang, T., & Lim, S. (2025). Ultra-Wideband Double-Pentagonal Fractal Antenna for C-, X-, Ku- and K-Band Wireless Applications. Micromachines, 16(11), 1237. https://doi.org/10.3390/mi16111237
 
        


 
       