Localized Electric Field Tailoring to Balance Voltage Reliability, Current Density, and High-Frequency Performance of AlGaN/GaN HEMTs
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Matching Simulated and Measured Data for the MOS-HEMT
3.2. Mechanism of Localized Electric Field Tailoring by Non-Uniform Composite Gate Dielectrics
3.3. Analysis of Simulation Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- van Deurzen, L.; Kim, E.; Pieczulewski, N.; Zhang, Z.; Feduniewicz-Zmuda, A.; Chlipala, M.; Siekacz, M.; Muller, D.; Xing, H.G.; Jena, D.; et al. Using both faces of polar semiconductor wafers for functional devices. Nature 2024, 634, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yu, Q.; Liu, S.; Qin, Y. Piezotronic transistors based on GaN wafer for highly sensitive pressure sensing with high linearity and high stability. ACS Nano 2024, 18, 13607–13617. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Chen, J.; Ding, Y.; Huang, W. Piezotronic effect on two-dimensional electron gas in AlGaN/GaN heterostructure. Nano Energy 2022, 96, 107098. [Google Scholar] [CrossRef]
- Cong, Z.; Lu, X.; He, Y.; Cai, M.; Wang, X.; Wang, Y.; Ma, X.; Hao, Y. Ferroelectric passivation layer derived high performance AlGaN/GaN heterojunction field-effect transistor. Appl. Phys. Lett. 2023, 123, 212104. [Google Scholar] [CrossRef]
- Hospodková, A.; Hájek, F.; Hubáček, T.; Gedeonová, Z.; Hubík, P.; Hývl, M.; Pangrác, J.; Dominec, F.; Košutová, T. Electron transport properties in high electron mobility transistor structures improved by V-pit formation on the AlGaN/GaN interface. ACS Appl. Mater. Interfaces 2023, 15, 19646–19652. [Google Scholar] [CrossRef]
- Cao, Y.; Pomeroy, J.W.; Uren, M.J.; Yang, F.; Kuball, M. Electric field mapping of wide-bandgap semiconductor devices at a submicrometre resolution. Nat. Electron. 2021, 4, 478–485. [Google Scholar] [CrossRef]
- Nela, L.; Ma, J.; Erine, C.; Xiang, P.; Shen, T.H.; Tileli, V.; Wang, T.; Cheng, K.; Matioli, E. Multi-channel nanowire devices for efficient power conversion. Nat. Electron. 2021, 4, 284–290. [Google Scholar] [CrossRef]
- Shu, J.; Sun, J.; Wu, X.; Chen, K.J. A dynamic two-stage gate driver for unlocking the fast-switching potential of GaN HEMT. IEEE Trans. Power Electron. 2025, 40, 4752–4756. [Google Scholar] [CrossRef]
- Tomita, R.; Ueda, S.; Kawada, T.; Mitsuzono, H.; Horio, K. Analysis of dependence of breakdown voltage on gate-drain distance in AlGaN/GaN HEMTs with high-k passivation layer. IEEE Trans. Electron. Devices 2021, 68, 1550–1556. [Google Scholar] [CrossRef]
- Pharkphoumy, S.; Janardhanam, V.; Jang, T.H.; Park, J.; Shim, K.H.; Choi, C.J. Optimized device geometry of normally-on field-plate AlGaN/GaN high electron mobility transistors for high breakdown performance using TCAD simulation. Electronics 2021, 10, 2642. [Google Scholar] [CrossRef]
- Zeng, D.; Zhang, Z.; Xue, Z.; Zhang, M.; Chu, P.K.; Mei, Y.; Tian, Z.; Di, Z. Single-crystalline metal-oxide dielectrics for top-gate 2D transistors. Nature 2024, 632, 788–794. [Google Scholar] [CrossRef]
- Huang, J.K.; Wan, Y.; Shi, J.; Zhang, J.; Wang, Z.; Wang, W.; Yang, N.; Liu, Y.; Lin, C.H.; Guan, X.; et al. High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 2022, 605, 262–267. [Google Scholar] [CrossRef]
- Schroeder, U.; Park, M.H.; Mikolajick, T.; Hwang, C.S. The fundamentals and applications of ferroelectric HfO2. Nat. Rev. Mater. 2022, 7, 653–669. [Google Scholar] [CrossRef]
- Li, S.; Hu, Q.; Wang, X.; Li, T.; Li, X.; Wu, Y. Improved interface properties and dielectric breakdown in recessed AlGaN/GaN MOS-HEMTs using HfSiOx as gate dielectric. IEEE Electron. Device Lett. 2019, 40, 295–298. [Google Scholar] [CrossRef]
- Li, Q.; Wang, S.; Li, Z.; Hu, X.; Liu, Y.; Yu, J.; Yang, Y.; Wang, T.; Meng, J.; Sun, Q.; et al. High-performance ferroelectric field-effect transistors with ultra-thin indium tin oxide channels for flexible and transparent electronics. Nat. Commun. 2024, 15, 2686. [Google Scholar] [CrossRef] [PubMed]
- Pal, B.; Dhar, B.; See, K.; Katz, H. Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors. Nat. Mater. 2009, 8, 898–903. [Google Scholar] [CrossRef]
- Cheema, S.S.; Shanker, N.; Wang, L.C.; Hsu, C.H.; Hsu, S.L.; Liao, Y.H.; Jose, M.; Gomez, J.; Chakraborty, W.; Li, W.; et al. Ultrathin ferroic HfO2-ZrO2 superlattice gate stack for advanced transistors. Nature 2022, 604, 65–71. [Google Scholar] [CrossRef]
- Li, W.; Zhou, J.; Cai, S.; Yu, Z.; Zhang, J.; Fang, N.; Li, T.; Wu, Y.; Chen, T.; Xie, X.; et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2019, 2, 563–571. [Google Scholar] [CrossRef]
- Turin, V.O. A modified transferred-electron high-field mobility model for GaN devices simulation. Solid-State Electron. 2005, 49, 1678–1682. [Google Scholar] [CrossRef]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices, 3rd ed.; Wiley: Hoboken, NJ, USA, 2006; ISBN 978-0-4711-4323-9. [Google Scholar]
- Ranjan, K.; Arulkumaran, S.; Ng, G.I.; Sandupatla, A. Investigation of self-heating effect on DC and RF performances in AlGaN/GaN HEMTs on CVD-diamond. IEEE J. Electron. Devices Soc. 2019, 7, 1264–1269. [Google Scholar] [CrossRef]
- Heidelberger, G.; Bernát, J.; Fox, A.; Marso, M.; Lüth, H.; Gregušová, D.; Kordoš, P. Comparative study on unpassivated and passivated AlGaN/GaN HFETs and MOSHFETs. Phys. Stat. Sol. (A) 2006, 203, 1876–1881. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, Y.; Liang, Y.; Zhang, Y.; Liu, W.; Wen, H.; Mitrovic, I.Z.; Zhao, C. Effect of high-k passivation layer on high voltage properties of GaN metal-insulator-semiconductor devices. IEEE Access 2020, 8, 95642–95649. [Google Scholar] [CrossRef]
- Wang, W.; Derluyn, J.; Germain, M.; Leys, M.; Degroote, S.; Schreurs, D.; Borghs, G. Effect of surface passivation on two-dimensional electron gas carrier density in AlGaN/GaN structures. Jpn. J. Appl. Phys. 2006, 45, 224–226. [Google Scholar] [CrossRef]
- Chowdhury, A.R.; Mauch, D.; Joshi, R.P.; Neuber, A.A.; Dickens, J. Contact extensions over a high-k dielectric layer for surface field mitigation in high power 4H-SiC photoconductive switches. IEEE Trans. Electron. Devices 2016, 63, 3171–3176. [Google Scholar] [CrossRef]
- Belkhiria, M.; Echouchene, F.; Jaba, N.; Bajahzar, A.; Belmabrouk, H. Impact of high-k gate dielectric on self-heating effects in PiFETs structure. IEEE Trans. Electron. Devices 2020, 67, 3522–3529. [Google Scholar] [CrossRef]
- Kaushal, V.; Íñiguez-de-la-Torre, I.; González, T.; Mateos, J.; Lee, B.; Misra, V.; Margala, M. Effects of a High-k Dielectric on the Performance of III–V Ballistic Deflection Transistors. IEEE Electron. Device Lett. 2012, 33, 1120–1122. [Google Scholar] [CrossRef]
- Hao, L.; Xu, K.; Guo, H.; Shao, P.; Ye, J.; Zhou, Y.; Liu, B.; Lu, H.; Zhang, R.; Zheng, Y.; et al. Enhanced performance of normally-off AlGaN/GaN MOS-HEMTs taking advantage of extreme-k BaTiO3 with prominent dielectric polarization. Appl. Phys. Lett. 2025, 127, 062103. [Google Scholar] [CrossRef]
- Hahn, H.; Benkhelifa, F.; Ambacher, O.; Brunner, F.; Noculak, A.; Kalisch, H.; Vescan, A. Threshold voltage engineering in GaN-based HFETs: A systematic study with the threshold voltage reaching more than 2 V. IEEE Trans. Electron. Devices 2015, 62, 538–545. [Google Scholar] [CrossRef]
- Palmer, H.B. The capacitance of a parallel-plate capacitor by the Schwartz-Christoffel transformation. Trans. Am. Inst. Electr. Eng. 1937, 56, 363–366. [Google Scholar] [CrossRef]
- Asllani, B.; Fayyaz, A.; Castellazzi, A.; Morel, H.; Planson, D. VTH subthreshold hysteresis technology and temperature dependence in commercial 4H-SiC MOSFETs. Microelectron. Reliab. 2018, 88–90, 604–609. [Google Scholar] [CrossRef]
- Murugapandiyan, P.; Revathy, A.; Ramkumar, N.; Kumar, R.S.; Mohanbabu, A. Comparative study of AlGaN/InGaN/β-Ga2O3 and InAlN/InGaN/β-Ga2O3 HEMTs for enhanced RF linearity. J. Electron. Mater. 2025, 54, 2340–2354. [Google Scholar] [CrossRef]
- Hanawa, H.; Satoh, Y.; Horio, K. Effects of buffer leakage current on breakdown characteristics in AlGaN/GaN HEMTs with a high-k passivation layer. Microelectron. Eng. 2015, 147, 96–99. [Google Scholar] [CrossRef]
- Western, N.J.; Perez-Wurfl, I.; Wenham, S.R.; Bremner, S.P. Point-contacting by localized dielectric breakdown with breakdown fields described by the Weibull distribution. IEEE Trans. Electron. Devices 2015, 62, 1826–1830. [Google Scholar] [CrossRef]
- Bothe, K.M.; von Hauff, P.A.; Afshar, A.; Foroughi-Abari, A.; Cadien, K.C.; Barlage, D.W. Electrical comparison of HfO2 and ZrO2 gate dielectrics on GaN. IEEE Trans. Electron. Devices 2013, 60, 4119–4124. [Google Scholar] [CrossRef]
- Singh, S.; Thakar, K.; Kaushik, N.; Muralidharan, B.; Lodha, S. Performance projections for two-dimensional materials in radio-frequency applications. Phys. Rev. Appl. 2018, 10, 014022. [Google Scholar] [CrossRef]
- Padhi, P.S.; Rai, S.K.; Srivastava, H.; Ajimsha, R.S.; Srivastava, A.K.; Misra, P. Maxwell-Wagner relaxation-driven high dielectric constant in Al2O3/TiO2 nanolaminates grown by pulsed laser deposition. ACS Appl. Mater. Interfaces 2022, 14, 12873–12882. [Google Scholar] [CrossRef]
Parameters | Value (µm) |
---|---|
LG | 4 |
LS | 70 |
LD | 70 |
Lgs | 3 |
Lgd | 14 |
WG | 100 |
WS | 100 |
WD | 100 |
Oxide dielectric layer | 0.02 |
GaN cap layer | 0.002 |
Al0.3Ga0.7N barrier layer | 0.03 |
AlN spacer layer | 0.001 |
GaN channel layer | 0.46 |
Al0.5Ga0.5N buffer layer | 3.4 |
AlN nucleation layer | 0.1 |
Si substrate layer | 5 |
Parameters | Units | Value |
---|---|---|
Vsat | cm/s | 1.91 × 107 |
EMT | kV/cm | 257 |
μlow | cm2/V·s | 1000 |
βT | - | 5.7 |
βC | - | 1.7 |
μ0n | cm2/V·s | 1200 |
k | eV/K | 8.617 × 10−5 |
T | K | 300 |
Ntj | cm−3 | 1.85 × 1016 |
σnj | cm2 | 1 × 10−15 |
Parameters | Measurement | Simulation | Error (%) |
---|---|---|---|
Ids,max | 292.6 mA/mm | 290.6 mA/mm | 0.7 |
gm,max | 65.32 mS/mm | 65.12 mS/mm | 0.3 |
Vth | −4.80 V | −4.77 V | 0.6 |
Parameters | Units | Value |
---|---|---|
ε0 | F/cm | 8.85 × 10−14 |
εr(SiO2) | - | 3.9 |
εr(Al2O3) | - | 9 |
εr(HfO2) | - | 25 |
εr(HfZrO) | - | 30 |
k | N·m2/C2 | 8.99 × 109 |
d | nm | 20 |
q | C | 1.602 × 10−19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, J.; Dong, Z.; Tian, P.; Liu, Y.; Zhai, J.; Hu, W. Localized Electric Field Tailoring to Balance Voltage Reliability, Current Density, and High-Frequency Performance of AlGaN/GaN HEMTs. Micromachines 2025, 16, 1199. https://doi.org/10.3390/mi16111199
Wang Y, Wang J, Dong Z, Tian P, Liu Y, Zhai J, Hu W. Localized Electric Field Tailoring to Balance Voltage Reliability, Current Density, and High-Frequency Performance of AlGaN/GaN HEMTs. Micromachines. 2025; 16(11):1199. https://doi.org/10.3390/mi16111199
Chicago/Turabian StyleWang, Yuxin, Jiangwen Wang, Zilong Dong, Peiran Tian, Yuxiu Liu, Junyi Zhai, and Weiguo Hu. 2025. "Localized Electric Field Tailoring to Balance Voltage Reliability, Current Density, and High-Frequency Performance of AlGaN/GaN HEMTs" Micromachines 16, no. 11: 1199. https://doi.org/10.3390/mi16111199
APA StyleWang, Y., Wang, J., Dong, Z., Tian, P., Liu, Y., Zhai, J., & Hu, W. (2025). Localized Electric Field Tailoring to Balance Voltage Reliability, Current Density, and High-Frequency Performance of AlGaN/GaN HEMTs. Micromachines, 16(11), 1199. https://doi.org/10.3390/mi16111199