Microstructure and Performance Evolution of Post-Plastic Deformed Austenitic Stainless Steel Fabricated by Selective Laser Melting
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Preparation and Stretch Deformation Process
2.2. Microstructure Characterization and Macroscopic Performance Testing
3. Results
3.1. Microstructural Characterization
3.2. Surface Passive Film Characteristics
3.3. Mechanical Nanoindentation Testing
3.4. Corrosion Resistance Testing
4. Discussion
5. Conclusions
- (1)
- After stretch deformation of the SLM304 stainless steel, as the deformation amount increases, the grains are destroyed, leading to disordered grain orientation, and a large number of subgrain structures are generated. Moreover, the shape of the micron cellular structure changed and the size decreased.
- (2)
- With the increase in the deformation amount, the content of α’ martensite increased significantly, and the thickness of the passive film on the surface of SLM304 stainless steel decreases slightly.
- (3)
- With the increasing deformation amount, the nanohardness of SLM304 stainless steel gradually increases, and its corrosion resistance gradually deteriorates.
- (4)
- The destruction of grains, martensitic transformation, dislocation accumulation, cellular structure, and changes in surface passive film characteristics caused by deformation lead to the increase in nanohardness of SLM304 stainless steel but cause the deterioration of its corrosion resistance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tian, H.; Li, B.; Yu, M.; Huang, S.; Mao, L.; Li, H.; Wang, K.; Zhou, Z.; Zhu, G.; Xu, K. Simultaneously improving the strength and plasticity of additively manufactured 316L stainless steel by adding aluminum. Adv. Eng. Mater. 2024, 26, 2301924. [Google Scholar] [CrossRef]
- Lin, J.H.; Huang, C.H.; Ke, Z.W.; Lin, M.C.; Lou, C.W. Mechanical behavior and property evaluations of electromagnetic shielding/far infrared functional composite boards made of nano carbon-stainless steel knitted fabrics and far infrared polypropylene. J. Polym. Res. 2024, 31, 90. [Google Scholar] [CrossRef]
- Zhang, W.; Coban, A.; Sasnauskas, A.; Cai, Z.; Gillham, B.; Mirihanage, W.; Yin, S.; Babu, R.P.; Lupoi, R. A novel powder sheet laser additive manufacturing method using irregular morphology feedstock. CIRP J. Manuf. Sci. Technol. 2024, 52, 26–35. [Google Scholar] [CrossRef]
- Mede, T.; Kocjan, A.; Paulin, I.; Godec, M. Numerical mesoscale modelling of microstructure evolution during selective laser melting. Metals 2020, 10, 800. [Google Scholar] [CrossRef]
- Zhou, C.; Yan, X.; Wang, H.; Huang, Y.; Xue, J.; Li, J.; Li, X.; Han, W. Advancements in hydrogen embrittlement of selective laser melting austenitic stainless steel: Mechanisms, microstructures, and future directions. J. Mater. Sci. Technol. 2025, 230, 219–235. [Google Scholar] [CrossRef]
- Bakhtiarian, M.; Vafaei, M.; Mashhuriazar, A.; Omidvar, H. Impact of build direction on microstructure and high-temperature mechanical properties of SLM-fabricated 316L stainless steel. Weld. World 2025, 69, 1501–1514. [Google Scholar] [CrossRef]
- He, F.; Wang, C.; Han, B.; Yeli, G.; Lin, X.; Wang, Z.; Wang, L.; Kai, J.-J. Deformation faulting and dislocation-cell refinement in a selective laser melted 316L stainless steel. Int. J. Plast. 2022, 156, 103346. [Google Scholar] [CrossRef]
- Yang, D.; Zhao, Y.; Kan, X.; Chu, X.; Sun, H.; Zhao, Z.-Z.; Sun, J.; Wang, H. Twinning behavior in deformation of SLM 316L stainless steel. Mater. Res. Express 2022, 9, 096502. [Google Scholar] [CrossRef]
- ASTM E8/E8M; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2022.
- Yang, J.; Wang, Y.; Li, F.; Huang, W.; Jing, G.; Wang, Z.; Zeng, X. Weldability, microstructure and mechanical properties of laser-welded selective laser melted 304 stainless steel joints. Mater. Sci. Technol. 2019, 35, 1817–1824. [Google Scholar] [CrossRef]
- Shen, Z.; Su, Y.; Liang, Z.; Long, X. Review of indentation size effect in crystalline materials: Progress, challenges and opportunities. J. Mater. Res. Technol. 2024, 31, 117–132. [Google Scholar] [CrossRef]
- Kurdi, A.; Tabbakh, T.; Basak, A.K. Microstructural and nanoindentation investigation on the laser powder bed fusion stainless steel 316L. Materials 2023, 16, 5933. [Google Scholar] [CrossRef]
- Tao, H.; Cai, Y.; Li, Z.; Xiu, H.; Tong, Z.; Ding, M. Research on the synergistic evolution law of microstructure and properties of deformed austenitic stainless steel. Coatings 2025, 15, 845. [Google Scholar] [CrossRef]
- Wang, F.; Chen, W.; Wang, D.; Hou, H.; Zhao, Y. Phase-field modeling and experimental investigation for rapid solidification in wire and arc additive manufacturing. J. Mater. Res. Technol. 2024, 28, 4585–4599. [Google Scholar] [CrossRef]
- Qi, X.; Gao, X.; Ma, C.; Huang, R.; Huang, F.; Liu, J.; Zhang, S. Effect of heat treatment on the intergranular corrosion of 316L stainless steel fabricated by selective laser melting. Mater. Charact. 2025, 220, 114648. [Google Scholar] [CrossRef]
- Dai, J.; Feng, H.; Li, H.-B.; Zhu, H.-C.; Zhang, S.-C.; Qu, J.-D.; He, T.; Jiang, Z.-H.; Zhang, T. Insights into the mechanism of Mo protecting CoCrFeNi HEA from pitting corrosion-A quantitative modelling study on passivation and repassivation processes. J. Mater. Sci. Technol. 2024, 182, 152–164. [Google Scholar] [CrossRef]
- Sakamaki, T.; Nishimoto, K.; Nishimura, M.; Aoyagi, Y. Development of a method for estimating stress -strain relationships based on the results of indentation tests that eliminated the size effect attributed to ultra -small loads. Tetsu Hagane-J. Iron Steel Inst. Jpn. 2024, 110, 860–870. [Google Scholar] [CrossRef]
- Jiang, S.; Cao, J.p.; Liu, Z.y.; Xu, X.x.; Yang, J.w.; Li, X.t. Effect of Ni on the oxidation behavior of corrosion products that form on low alloy steel exposed to a thin electrolyte layer environment. Corros. Sci. 2022, 206, 110471. [Google Scholar] [CrossRef]
- Yang, S.; Che, Z.; Liu, C.; Liu, W.; Li, J.; Cheng, X.; Li, X. Mechanism of the dual effect of Te addition on the localised corrosion resistance of 15-5PH stainless steel. Corros. Sci. 2023, 212, 110970. [Google Scholar] [CrossRef]
- Deng, R.; Zhang, Z.; Zhang, L.; Li, X.; Li, K.; Shi, L.; Gao, Z.; Zhang, X.; Wang, Z.; Chen, H. Forming characteristics and hot cracking formation mechanism of 6063 aluminum alloy by selective laser melting. Mater. Today Commun. 2025, 47, 113078. [Google Scholar] [CrossRef]
- Jiang, W.; Wu, H.; Zhai, H.; Wang, Y.; Li, D.; Dong, C. The influence of microstructural features on the fracture performance of specimens fabricated by SLM. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2025, 239, 6041–6053. [Google Scholar] [CrossRef]
- Xue, H.T.; Zhang, Z.J.; Hu, Z.L.; Ren, J.-Q.; Tang, F.-L.; Zhang, Y.; Lu, X.-F.; Li, J.-C. Twinning-induced energy-lowering structural transformation of Σ5 [001] (210) grain boundary: A pathway to grain-boundary relaxation. Acta Mater. 2025, 288, 120829. [Google Scholar] [CrossRef]
- Markova, O.; Clanet, C.; Husson, J. Quantifying both viscoelasticity and surface tension: Why sharp tips overestimate cell stiffness. Biophys. J. 2024, 123, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Lu, C.X.; Yang, X.J.; Jing, J.R.; Huang, X.; Li, J.S.; Lai, M.J. Remarkable contribution of stress-induced martensitic transformation to strain-hardening behavior in Ti- Mo-based metastable β-titanium alloys. Scr. Mater. 2024, 252, 116254. [Google Scholar] [CrossRef]
- He, Z.; Yang, Y.; Jiang, H. Modeling interfacial instability patterns during debonding a rigid spherical indenter from thin elastic films. J. Mech. Phys. Solids 2022, 169, 105089. [Google Scholar] [CrossRef]
- Zeng, G.; Huang, Z.; Deng, B.; Ge, R. Crystal plasticity finite element simulation of tensile fracture of 316L stainless steel produced by selective laser melting. Metals 2025, 15, 567. [Google Scholar] [CrossRef]
- Andric, P.; Restrepo, S.E.; Maresca, F. Mechanism and prediction of screw dislocation strengthening by interstitials in advanced high-strength steels: Application to Fe-C and Fe-N alloys. Mech. Mater. 2025, 205, 105314. [Google Scholar] [CrossRef]
- Huang, W.; Zhao, X.; Lu, W.; Du, Z.; Zhang, Y. Hardening phenomenon and effect of loading frequency on low-cycle fatigue property of 304 stainless steel manufactured by laser metal deposition. Mater. Sci. Technol. 2025. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, B.; Wu, S.; Liu, W. Anisotropic tension-compression asymmetry in SLM 316L stainless steel. Int. J. Mech. Sci. 2023, 246, 108139. [Google Scholar] [CrossRef]
- Fan, J.; Zhu, Y.; Wang, W.; Chen, K.; Godfrey, A.; Yu, T.; Huang, X. Recovery of dislocation cell structures in 316L stainless steel manufactured by selective laser melting. J. Mater. Res. Technol. 2024, 30, 9472–9480. [Google Scholar] [CrossRef]
- Revilla, R.I.; Li, G.; Pion, R.; Marcoen, K.; Andreatta, F.; Fedrizzi, L.; Vanmeensel, K.; De Graeve, I. Effect of heat treatment on the microstructure and pitting corrosion behavior of 316L stainless steel fabricated by different additive manufacturing methods (L-PBF versus L-DED): Comparative investigation exploring the role of microstructural features on passivity. Corros. Sci. 2024, 228, 111814. [Google Scholar]
Material | Si | Mn | P | S | Cr | Ni | Fe |
---|---|---|---|---|---|---|---|
SLM304 | 0.36 | 1.12 | 0.02 | 0.02 | 18.19 | 8.61 | Bal. |
Material | Yield Strength σs/MPa | Tensile Strength σb/MPa | Elongation δ/% |
---|---|---|---|
SLM304 | 490 | 740 | 51 |
Samples | Epit (mVSCE) | Ecos (mVSCE) | Ipit (μAcm−2) | Icos (nAcm−2) |
---|---|---|---|---|
ST0% | 127.17 ± 3.5 | −251.34 ± 6.5 | 5.56 ± 0.6 | 0.51 ± 0.05 |
ST10% | 67.35 ± 1.7 | −281.56 ± 6.1 | 9.53 ± 0.9 | 1.49 ± 0.15 |
ST20% | 19.11 ± 0.5 | −289.08 ± 6.3 | 10.94 ± 1.1 | 3.01 ± 0.2 |
ST30% | −51.91 ± 1.5 | −296.28 ± 6.7 | 23.88 ± 2.4 | 5.24 ± 0.5 |
ST40% | −150.28 ± 4.3 | −310.43 ± 6.5 | 67.45 ± 6.5 | 28.84 ± 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, H.; Li, Z.; Ma, L.; Cai, Y.; Xiu, H.; Ding, M.; Tong, Z. Microstructure and Performance Evolution of Post-Plastic Deformed Austenitic Stainless Steel Fabricated by Selective Laser Melting. Micromachines 2025, 16, 1104. https://doi.org/10.3390/mi16101104
Tao H, Li Z, Ma L, Cai Y, Xiu H, Ding M, Tong Z. Microstructure and Performance Evolution of Post-Plastic Deformed Austenitic Stainless Steel Fabricated by Selective Laser Melting. Micromachines. 2025; 16(10):1104. https://doi.org/10.3390/mi16101104
Chicago/Turabian StyleTao, Huimin, Zi Li, Linlin Ma, Yafang Cai, Haiteng Xiu, Mingming Ding, and Zeqi Tong. 2025. "Microstructure and Performance Evolution of Post-Plastic Deformed Austenitic Stainless Steel Fabricated by Selective Laser Melting" Micromachines 16, no. 10: 1104. https://doi.org/10.3390/mi16101104
APA StyleTao, H., Li, Z., Ma, L., Cai, Y., Xiu, H., Ding, M., & Tong, Z. (2025). Microstructure and Performance Evolution of Post-Plastic Deformed Austenitic Stainless Steel Fabricated by Selective Laser Melting. Micromachines, 16(10), 1104. https://doi.org/10.3390/mi16101104