Magnetorheological Fluid Utilized for Online Rotor Balancing
Abstract
1. Introduction
2. Functional Principle and Design of the Online Balancing System
Principle of Mass Compensation in a Three-Chamber System and Its Limitation
3. Development and Analysis of the Magnetic Excitation System
3.1. Permanent Magnet Circuit in the Chamber for Stabilizing the Balancing Mass
3.2. Stationary Electromagnet and Interaction with the Rotating Chamber System
4. Modeling the Non-Newtonian Fluid Behavior and the Sphere Dynamic
4.1. Modeling of the Non-Newtonian Fluid Behavior of the MRF Used
4.2. Model for Describing the Motion of the Sphere
5. Setup for Experimental Analysis of the Balancing Process and Experimental Parameterization
5.1. Setup of the Test Stand and Description of the Unbalance Measurement
5.2. Experimental Parameterization of the Displacement of the Sphere
5.3. Results of the Parameterization Process and Comparison with the Simulation Outputs
6. Control Algorithm for Time-Efficient Unbalance Correction
7. Experimental Validation of the Proposed Balancing System
8. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MRF | Magnetorheological Fluid |
EM | Electromagnet |
PM | Permanentmagnet |
References
- ISO 21940-1; Mechanical Vibration—Rotor Balancing—Part 1: Introduction. 1st ed. International Organization for Standardization Geneva: Geneva, Switzerland, 2019.
- Rodrigues, D.J.; Champneys, A.R.; Friswell, M.I.; Wilson, R.E. Experimental investigation of a single-plane automatic balancing mechanism for a rigid rotor. J. Sound Vib. 2011, 330, 385–403. [Google Scholar] [CrossRef]
- Majewskia, T.; Szwedowicz, D.; Meraz Melo, M. Self-balancing system of the disk on an elastic shaft. J. Sound Vib. 2015, 359, 2–20. [Google Scholar] [CrossRef]
- Kim, T.; Na, S. New automatic ball balancer design to reduce transient-response in rotor system. Mech. Syst. Signal Process. 2013, 37, 265–275. [Google Scholar] [CrossRef]
- Urbiola-Soto, L.; Lopez-Parra, M.; Cuenca-Jimenez, F. Improved design of a bladed hydraulic balance ring. J. Sound Vib. 2014, 333, 669–682. [Google Scholar] [CrossRef]
- Bae, S.; Lee, J.M.; Kang, Y.J.; Kang, J.S.; Yun, J.R. Dynamic analysis of an automatic washing machine with a hydraulic balancer. J. Sound Vib. 2002, 257, 3–18. [Google Scholar] [CrossRef]
- Haidar, A.; Palacios, J. Modified ball-type automatic balancer for rotating shafts: Analysis and experiment. J. Sound Vib. 2021, 496, 115927. [Google Scholar] [CrossRef]
- Pakuła, S. Method for vibration suppression in rotary machines using multiple automatic ball balancers. J. Sound Vib. 2025, 596, 118683. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Zhao, H. New Active Online Balancing Method for Grinding Wheel Using Liquid Injection and Free Dripping. J. Vib. Acoust. 2018, 140, 031001. [Google Scholar] [CrossRef]
- Chen, L.-F.; Cao, X.; Gao, J.-J. A study on electromagnetic driven bi-disc compensator for rotor autobalancing and its movement control. WSEAS Trans. Syst. Control 2010, 5, 333–342. [Google Scholar]
- Carlson, J.D. Magnetorheological Fluid Actuators Adaptronics and Smart Structures—Basics, Materials, Design and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Chauhan, V.; Kumar, A.; Sham, R. Magnetorheological fluids: A comprehensive review. Manuf. Rev. 2024, 11, 6. [Google Scholar] [CrossRef]
- Deng, H.; Lian, X.; Gong, S. A brief review of variable stiffness and damping magnetorheological fluid dampers. Front. Mater. 2022, 9, 1019426. [Google Scholar] [CrossRef]
- Dikondwar, S.; Kumbhar, M.B.; Jagadeesha, T. A Novel Rotary Magnetorheological Fluid based Damper with Variable Damping Characteristics for an Enhanced Ride Comfort and Stability for Automotive Systems. J. Vib. Eng. Technol. 2025, 13, 44. [Google Scholar] [CrossRef]
- Hegger, C.; Maas, J. Automatic Two-Speed Transmission Based on a Combined MRF Coupling Element. IEEE/ASME Trans. Mechatron. 2021, 27, 3019–3028. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, X.; Xiang, Z.; You, Y.; Li, B. An Online Active Balancing Method Using Magnetorheological Effect of Magnetic Fluid. J. Vib. Acoust. 2019, 141, 011008. [Google Scholar] [CrossRef]
- Nakamoto, K.; Adachi, K.; Shirase, K. Proposal of Real-Time Balancing mechanism Using Magnetic Fluid for Machine Tool Spindle. In Proceedings of the Manufacturing Systems and Technologies for the New Frontier: The 41st CIRP, Tokyo, Japan, 26–28 May 2008. [Google Scholar]
- Schreiner, V.; Hegger, C.; Maas, J. Automatic active balancing of rotating systems using real-time controlled magnetorheological fluids. Smart Mater. Struct. 2022, 31, 105003. [Google Scholar] [CrossRef]
- Schreiner, V.; Maas, J. Utilization of Sedimentation in Magnetorheological Fluids for Online Rotor Balancing. In Proceedings of the ACTUATOR 2024: International Conference and Exhibition on New Actuator Systems and Applications, Wiesbaden, Germany, 13–14 June 2024. [Google Scholar]
- Schreiner, V.; Maas, J. Online rotor balancing by weight spheres controlled by magnetorheological fluids. In Proceedings of the ACTUATOR 2022: International Conference and Exhibition on New Actuator Systems and Applications, Mannheim, Germany, 29–30 June 2022. [Google Scholar]
- Hegger, C.; Maas, J. Smart sealing for magnetorheological fluid actuators. J. Intell. Mater. Syst. Struct. 2018, 30, 689–700. [Google Scholar] [CrossRef]
- BASF SE. Magnetorheological Fluid Basonetic® 5030—Optimum Torque Transmission for Clutch-Type Applications; BASF SE: Ludwigshafen, Germany, 2009. [Google Scholar]
- Papanastasiou, T.C. Flows of Materials with Yield. J. Rheol. 1987, 31, 385–404. [Google Scholar] [CrossRef]
Parameter | Symbol | Value | Unit |
---|---|---|---|
Coil windings | N | 400 | - |
Dimensions PM | - | ||
Magnetization PM | N45 | ||
max. displacement | 22.65 | mm | |
max. unbalance correction | 121.6 | g mm | |
Radius sphere | 4.575 | mm | |
Mass sphere | 7.02 | g | |
Mass density sphere | 17.5 | g/ | |
Angular velocity | 50 | rad/s |
Chamber | Compensation Current | Offset |
---|---|---|
Chamber A | A | A |
Chamber B | A | A |
Chamber C | A | A |
Particle volume concentration | |
Density | |
Relative permeability at | |
Yield stress at | |
Dynamic viscosity at | |
Bingham-Papanastasiou exponent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schreiner, V.; Maas, J. Magnetorheological Fluid Utilized for Online Rotor Balancing. Micromachines 2025, 16, 1083. https://doi.org/10.3390/mi16101083
Schreiner V, Maas J. Magnetorheological Fluid Utilized for Online Rotor Balancing. Micromachines. 2025; 16(10):1083. https://doi.org/10.3390/mi16101083
Chicago/Turabian StyleSchreiner, Valentin, and Jürgen Maas. 2025. "Magnetorheological Fluid Utilized for Online Rotor Balancing" Micromachines 16, no. 10: 1083. https://doi.org/10.3390/mi16101083
APA StyleSchreiner, V., & Maas, J. (2025). Magnetorheological Fluid Utilized for Online Rotor Balancing. Micromachines, 16(10), 1083. https://doi.org/10.3390/mi16101083