An Approach to Reduce Tuning Sensitivity in the PIC-Based Optoelectronic Oscillator by Controlling the Phase Shift in Its Feedback Loop
Abstract
1. Introduction
2. Analytical Model of the OEO’s Frequency Tuning
3. Potential Schemes for the Continuous Frequency Tuning of the OEO
3.1. MZI-Based Delay Line
3.2. MRR-Based Delay Line
4. Simulation of the OEO’s Frequency Tuning Based on the Proposed Approach
4.1. Waveguide Components
- -
- A linear model that examines how the refractive index depends on temperature for a heating element [72]:
- -
- The Soref and Bennett model at 1550 nm for a semiconductor diode [73]:
4.2. Delay Lines
- -
- Gaussian pulse repetition rate—100 MHz
- -
- simulation time—10 ns.
4.3. OEO Simulation
- -
- sample rate: 1.8 THz
- -
- simulation time window: 1 μs
- -
- laser source central wavelength: 1550 nm for delay lines on the MZI and 1550.4 nm for delay lines based on the MRR
- -
- laser source bandwidth: 1 MHz
- -
- microwave amplifier gain: 85 dB
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hao, T.; Liu, Y.; Tang, J.; Cen, Q.; Li, W.; Zhu, N.; Dai, Y.; Capmany, J.; Yao, J.; Li, M. Recent Advances in Optoelectronic Oscillators. Adv. Photon. 2020, 2, 044001. [Google Scholar] [CrossRef]
- Hao, T.; Tang, J.; Domenech, D.; Li, W.; Zhu, N.; Capmany, J.; Li, M. Toward Monolithic Integration of OEOs: From Systems to Chips. J. Light. Technol. 2018, 36, 4565–4582. [Google Scholar] [CrossRef]
- 24-24.5GHz Tx Multifunction; United Monolithic Semiconductors: Ulm, Germany, 2012.
- 18.10 GHz to 26.60 GHz Quadband VCO; Analog Devices: Wilmington, MA, USA, 2020.
- Maleki, L. The Optoelectronic Oscillator. Nat. Photon 2011, 5, 728–730. [Google Scholar] [CrossRef]
- Li, M.; Hao, T.; Li, W.; Dai, Y. Tutorial on Optoelectronic Oscillators. APL Photonics 2021, 6, 061101. [Google Scholar] [CrossRef]
- Ivanov, V.; Voronkov, G.; Golubchikov, A.; Kuznetsov, I.; Grakhova, E.; Kutluyarov, R. PIC-Based Opto-Electronic Oscillator for Communication and Sensing Applications. J. Opt. Technol. 2023, 90, 719–724. [Google Scholar] [CrossRef]
- Yao, J. Optoelectronic Oscillators for High Speed and High Resolution Optical Sensing. J. Light. Technol. 2017, 35, 3489–3497. [Google Scholar] [CrossRef]
- Zou, X.; Liu, X.; Li, W.; Li, P.; Pan, W.; Yan, L.; Shao, L. Optoelectronic Oscillators (OEOs) to Sensing, Measurement, and Detection. IEEE J. Quantum Electron. 2016, 52, 0601116. [Google Scholar] [CrossRef]
- Voronkov, G.S.; Aleksakina, Y.V.; Ivanov, V.V.; Zakoyan, A.G.; Stepanov, I.V.; Grakhova, E.P.; Butt, M.A.; Kutluyarov, R.V. Enhancing the Performance of the Photonic Integrated Sensing System by Applying Frequency Interrogation. Nanomaterials 2023, 13, 193. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Y.; Wang, Y.; Zhang, T.; Shao, M.; Yu, D.; Fu, H.; Jia, Z. Integrated Optic-Fiber Sensor Based on Enclosed EFPI and Structural Phase-Shift for Discriminating Measurement of Temperature, Pressure and RI. Opt. Laser Technol. 2020, 126, 106112. [Google Scholar] [CrossRef]
- Bogaerts, W.; De Heyn, P.; Van Vaerenbergh, T.; De Vos, K.; Kumar Selvaraja, S.; Claes, T.; Dumon, P.; Bienstman, P.; Van Thourhout, D.; Baets, R. Silicon Microring Resonators. Laser Photonics Rev. 2012, 6, 47–73. [Google Scholar] [CrossRef]
- Grist, S.M.; Schmidt, S.A.; Flueckiger, J.; Donzella, V.; Shi, W.; Talebi Fard, S.; Kirk, J.T.; Ratner, D.M.; Cheung, K.C.; Chrostowski, L. Silicon Photonic Micro-Disk Resonators for Label-Free Biosensing. Opt. Express 2013, 21, 7994–8006. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hao, T.; Li, G.; Li, M.; Zhu, N.; Li, W. Microwave Photonic Temperature Sensing Based on Fourier Domain Mode-Locked OEO and Temperature-to-Time Mapping. J. Light. Technol. 2022, 40, 5322–5327. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, M.; Tang, Y.; Ding, Q.; Wu, B.; Yang, Y.; Mu, H.; Yin, B.; Jian, S. High-Sensitivity Measurement of Angular Velocity Based on an Optoelectronic Oscillator with an Intra-Loop Sagnac Interferometer. Opt. Lett. 2018, 43, 2799–2802. [Google Scholar] [CrossRef]
- Cen, Q.; Ding, H.; Hao, T.; Guan, S.; Qin, Z.; Lyu, J.; Li, W.; Zhu, N.; Xu, K.; Dai, Y.; et al. Large-Scale Coherent Ising Machine Based on Optoelectronic Parametric Oscillator. Light. Sci. Appl. 2022, 11, 333. [Google Scholar] [CrossRef] [PubMed]
- Böhm, F.; Verschaffelt, G.; Van Der Sande, G. A Poor Man’s Coherent Ising Machine Based on Opto-Electronic Feedback Systems for Solving Optimization Problems. Nat. Commun. 2019, 10, 3538. [Google Scholar] [CrossRef]
- Chembo, Y.K. Machine Learning Based on Reservoir Computing with Time-Delayed Optoelectronic and Photonic Systems. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 013111. [Google Scholar] [CrossRef]
- Tanaka, G.; Yamane, T.; Héroux, J.B.; Nakane, R.; Kanazawa, N.; Takeda, S.; Numata, H.; Nakano, D.; Hirose, A. Recent Advances in Physical Reservoir Computing: A Review. Neural Netw. 2019, 115, 100–123. [Google Scholar] [CrossRef]
- Pelucchi, E.; Fagas, G.; Aharonovich, I.; Englund, D.; Figueroa, E.; Gong, Q.; Hannes, H.; Liu, J.; Lu, C.-Y.; Matsuda, N.; et al. The Potential and Global Outlook of Integrated Photonics for Quantum Technologies. Nat. Rev. Phys. 2021, 4, 194–208. [Google Scholar] [CrossRef]
- Tang, J.; Hao, T.; Li, W.; Zhu, N.; Li, M.; Domenech, D.; Banos, R.; Munoz, P.; Capmany, J. An Integrated Optoelectronic Oscillator. In Proceedings of the 2017 International Topical Meeting on Microwave Photonics (MWP), Beijing, China, 23–26 October 2017; IEEE: Beijing, China, 2017; pp. 1–4. [Google Scholar]
- Zhang, W.; Yao, J. Silicon Photonic Integrated Optoelectronic Oscillator for Frequency-Tunable Microwave Generation. J. Light. Technol. 2018, 36, 4655–4663. [Google Scholar] [CrossRef]
- Tang, J.; Hao, T.; Li, W.; Domenech, D.; Baños, R.; Muñoz, P.; Zhu, N.; Capmany, J.; Li, M. Integrated Optoelectronic Oscillator. Opt. Express 2018, 26, 12257–12265. [Google Scholar] [CrossRef]
- Hao, T.; Li, W.; Zhu, N.; Li, M. Perspectives on Optoelectronic Oscillators. APL Photonics 2023, 8, 020901. [Google Scholar] [CrossRef]
- Nielsen, L.; Heck, M.J.R. A Computationally Efficient Integrated Coupled Opto-Electronic Oscillator Model. J. Light. Technol. 2020, 38, 5430–5439. [Google Scholar] [CrossRef]
- Han, J.-Y.; Huang, Y.-T.; Hao, Y.-Z.; Tang, M.; Wang, F.-L.; Xiao, J.-L.; Yang, Y.-D.; Huang, Y.-Z. Wideband Frequency-Tunable Optoelectronic Oscillator with a Directly Modulated AlGaInAs/InP Integrated Twin-Square Microlaser. Opt. Express 2018, 26, 31784–31793. [Google Scholar] [CrossRef]
- Do, P.T.; Alonso-Ramos, C.; Le Roux, X.; Ledoux, I.; Journet, B.; Cassan, E. Wideband Tunable Microwave Signal Generation in a Silicon-Micro-Ring-Based Optoelectronic Oscillator. Sci. Rep. 2020, 10, 6982. [Google Scholar] [CrossRef] [PubMed]
- Wani, M.; Azeemuddin, S. Optoelectronic Oscillator (OEO) Designs: Wide-Range Tunable Silicon Microring Resonator Design and Low-Noise High Frequency Optical Mix Oscillator Design. In Proceedings of the OSA Advanced Photonics Congress 2021, Washington, DC, USA, 26–29 July 2021; Optica Publishing Group: Washington, DC, USA, 2021; p. JTu1A.8. [Google Scholar]
- Weng, W.; He, J.; Kaszubowska-Anandarajah, A.; Anandarajah, P.M.; Kippenberg, T.J. Microresonator Dissipative Kerr Solitons Synchronized to an Optoelectronic Oscillator. Phys. Rev. Appl. 2022, 17, 024030. [Google Scholar] [CrossRef]
- Carroll, L.; Lee, J.-S.; Scarcella, C.; Gradkowski, K.; Duperron, M.; Lu, H.; Zhao, Y.; Eason, C.; Morrissey, P.; Rensing, M.; et al. Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices. Appl. Sci. 2016, 6, 426. [Google Scholar] [CrossRef]
- Milanizadeh, M.; Ahmadi, S.; Petrini, M.; Aguiar, D.; Mazzanti, R.; Zanetto, F.; Guglielmi, E.; Sampietro, M.; Morichetti, F.; Melloni, A. Control and Calibration Recipes for Photonic Integrated Circuits. IEEE J. Select. Top. Quantum Electron. 2020, 26, 1–10. [Google Scholar] [CrossRef]
- Ptasinski, J.; Khoo, I.-C.; Fainman, Y. Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals. Materials 2014, 7, 2229–2241. [Google Scholar] [CrossRef] [PubMed]
- De Aguiar, D.O.; Annoni, A.; Peserico, N.; Guglielmi, E.; Carminati, M.; Ferrari, G.; Morichetti, F. Automated Tuning, Control and Stabilization of Photonic Integrated Circuits; Cheben, P., Čtyroký, J., Molina-Fernández, I., Eds.; SPIE: Prague, Czech Republic, 2017; p. 1024208. [Google Scholar]
- Jin, W.; Yang, Q.-F.; Chang, L.; Shen, B.; Wang, H.; Leal, M.A.; Wu, L.; Gao, M.; Feshali, A.; Paniccia, M.; et al. Hertz-Linewidth Semiconductor Lasers Using CMOS-Ready Ultra-High-Q Microresonators. Nat. Photonics 2021, 15, 346–353. [Google Scholar] [CrossRef]
- Yang, K.Y.; Oh, D.Y.; Lee, S.H.; Yang, Q.-F.; Yi, X.; Shen, B.; Wang, H.; Vahala, K. Bridging Ultrahigh-Q Devices and Photonic Circuits. Nat. Photon 2018, 12, 297–302. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhong, K.; Zhou, X.; Tsang, H.K. Broadband High-Q Multimode Silicon Concentric Racetrack Resonators for Widely Tunable Raman Lasers. Nat. Commun. 2022, 13, 3534. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, C.; Cheng, R.; Shams-Ansari, A.; Lončar, M. Monolithic Ultra-High-Q Lithium Niobate Microring Resonator. Optica 2017, 4, 1536–1537. [Google Scholar] [CrossRef]
- Venghaus, H.; Grote, H. (Eds.) Fibre Optic Communication: Key Devices; Springer Series in Optical Sciences; Springer International Publishing: Cham, Switzerland, 2017; Volume 161, ISBN 978-3-319-42365-4. [Google Scholar]
- Yao, X.S.; Maleki, L. Multiloop Optoelectronic Oscillator. IEEE J. Quantum Electron. 2000, 36, 79–84. [Google Scholar] [CrossRef]
- Poinsot, S.; Porte, H.; Goedgebuer, J.-P.; Rhodes, W.T.; Boussert, B. Continuous Radio-Frequency Tuning of an Optoelectronic Oscillator with Dispersive Feedback. Opt. Lett. 2002, 27, 1300–1302. [Google Scholar] [CrossRef] [PubMed]
- Bluestone, A.; Spencer, D.T.; Srinivasan, S.; Guerra, D.; Bowers, J.E.; Theogarajan, L. An Ultra-Low Phase-Noise 20-GHz PLL Utilizing an Optoelectronic Voltage-Controlled Oscillator. IEEE Trans. Microw. Theory Techn. 2015, 63, 1046–1052. [Google Scholar] [CrossRef]
- Yao, X.S.; Maleki, L. Optoelectronic Microwave Oscillator. J. Opt. Soc. Am. B 1996, 13, 1725–1735. [Google Scholar] [CrossRef]
- Yang, B.; Jin, X.; Zhang, X.; Zheng, S.; Chi, H.; Wang, Y. A Wideband Frequency-Tunable Optoelectronic Oscillator Based on a Narrowband Phase-Shifted FBG and Wavelength Tuning of Laser. IEEE Photon. Technol. Lett. 2012, 24, 73–75. [Google Scholar] [CrossRef]
- Peng, H.; Xu, Y.; Peng, X.; Zhu, X.; Guo, R.; Chen, F.; Du, H.; Chen, Y.; Zhang, C.; Zhu, L.; et al. Wideband Tunable Optoelectronic Oscillator Based on the Deamplification of Stimulated Brillouin Scattering. Opt. Express 2017, 25, 10287–10305. [Google Scholar] [CrossRef]
- Guo, A.; Qin, S.; Xu, M. A Charge Pump Phase-Locked Loop with Low Phase Noise Based on Ring Oscillator. J. Phys. Conf. Ser. 2024, 2810, 012003. [Google Scholar] [CrossRef]
- Melati, D.; Waqas, A.; Mushtaq, Z.; Melloni, A. Wideband Integrated Optical Delay Line Based on a Continuously Tunable Mach–Zehnder Interferometer. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 012003. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, J. A Fully Reconfigurable Waveguide Bragg Grating for Programmable Photonic Signal Processing. Nat. Commun. 2018, 9, 1396. [Google Scholar] [CrossRef] [PubMed]
- Kajfez, D. Q-Factor. In Encyclopedia of RF and Microwave Engineering; Chang, K., Ed.; Wiley: Hoboken, NJ, USA, 2005; ISBN 978-0-471-27053-9. [Google Scholar]
- Wang, X.; Yao, X.S. Phase-Locked Opto-Electronic Oscillator (OEO) of Ultralow Phase Noise With Record-Low Allan Deviation of 3.4 × 10−14 at 1 s. IEEE Trans. Microw. Theory Techn. 2023, 71, 5381–5392. [Google Scholar] [CrossRef]
- Feng, D.; Liu, Y.; Liang, Y.; Deng, M. Enhancing Sensitivity of Trace Copper Detection Based on Coupled Optoelectronic Oscillator. Sens. Actuators A Phys. 2024, 370, 115231. [Google Scholar] [CrossRef]
- Ahmadfard, F.; Hosseini, S.E. Design and Simulation of a Tunable Parity-Time Symmetric Optoelectronic Oscillator Utilizing Integrated Components. Sci. Rep. 2024, 14, 16014. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Xu, Y.; Guo, R.; Du, H.; Chen, J.; Chen, Z. High Sensitivity Microwave Phase Noise Analyzer Based on a Phase Locked Optoelectronic Oscillator. Opt. Express 2019, 27, 18910–18927. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, F.; Yi Xi, K. A Novel Tunable Optoelectronic Oscillator Based on a Photonic RF Phase Shifter. Optoelectron. Lett. 2013, 9, 446–448. [Google Scholar] [CrossRef]
- Chew, S.X.; Yi, X.; Yang, W.; Wu, C.; Li, L.; Nguyen, L.; Minasian, R. Optoelectronic Oscillator Based Sensor Using an On-Chip Sensing Probe. IEEE Photonics J. 2017, 9, 5500809. [Google Scholar] [CrossRef]
- Yao, X.S.; Maleki, L. Optoelectronic Oscillator for Photonic Systems. IEEE J. Quantum Electron. 1996, 32, 1141–1149. [Google Scholar] [CrossRef]
- McKay, L.; Merklein, M.; Liu, Y.; Cramer, A.; Maksymow, J.; Chilton, A.; Yan, K.; Choi, D.-Y.; Madden, S.J.; DeSalvo, R.; et al. Integrated Microwave Photonic True-Time Delay with Interferometric Delay Enhancement Based on Brillouin Scattering and Microring Resonators. Opt. Express 2020, 28, 36020–36032. [Google Scholar] [CrossRef]
- Megret, P.; Roeloffzen, C.G.H.; Wuilpart, M.; Zhuang, L.; Heideman, R.; Bette, S.; Borreman, A.; Staquet, N.; van Etten, W. Ring resonator-Based Tunable Optical Delay Line in LPCVD Waveguide Technology. In Proceedings of the 10th Annual Symposium of the IEEE/LEOS Benelux Chapter 2005, Mons, Belgium, 1–2 December 2005; pp. 79–82. [Google Scholar]
- Meijerink, A.; Roeloffzen, C.G.H.; Meijerink, R.; Zhuang, L.; Marpaung, D.A.I.; Bentum, M.J.; Burla, M.; Verpoorte, J.; Jorna, P.; Hulzinga, A.; et al. Novel Ring Resonator-Based Integrated Photonic Beamformer for Broadband Phased Array Receive Antennas—Part I: Design and Performance Analysis. J. Light. Technol. 2010, 28, 3–18. [Google Scholar] [CrossRef]
- Xie, J.; Zhou, L.; Li, Z.; Wang, J.; Chen, J.; Lee, H.; Chen, T.; Li, J.; Painter, O.; Vahala, K.J.; et al. Seven-Bit Reconfigurable Optical True Time Delay Line Based on Silicon Integration. Opt. Express 2014, 22, 22707–22715. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, L.; Li, R.; Xie, J.; Lu, L.; Wu, K.; Chen, J. Continuously Tunable Ultra-Thin Silicon Waveguide Optical Delay Line. Optica 2017, 4, 507–515. [Google Scholar] [CrossRef]
- Zhu, C.; Zhou, G.; Chen, J.; Lu, L.; Zhou, L.; Xu, W.; Shan, W. Silicon Integrated Microwave Photonic Beamformer. Optica 2020, 7, 1162–1170. [Google Scholar] [CrossRef]
- Liu, Y.; Wichman, A.R.; Isaac, B.; Kalkavage, J.; Adles, E.J.; Clark, T.R.; Klamkin, J. Ultra-Low-Loss Silicon Nitride Optical Beamforming Network for Wideband Wireless Applications. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 8300410. [Google Scholar] [CrossRef]
- Tsokos, C.; Andrianopoulos, E.; Raptakis, A.; Lyras, N.K.; Gounaridis, L.; Groumas, P.; Bernardus Timens, R.; Visscher, I.; Grootjans, R.; Wefers, L.S.; et al. True Time Delay Optical Beamforming Network Based on Hybrid Inp-Silicon Nitride Integration. J. Light. Technol. 2021, 39, 5845. [Google Scholar] [CrossRef]
- Burla, M.; Romero Cortés, L.; Li, M.; Wang, X.; Chrostowski, L.; Azãna, J.; Ng, W.; Walston, A.; Tangonan, G.; Lee, J.; et al. Integrated Waveguide Bragg Gratings for Microwave Photonics Signal Processing. Opt. Express 2013, 21, 25120–25147. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ashrafi, R.; Adams, R.; Glesk, I.; Gasulla, I.; Capmany, J.; Chen, L.R. Subwavelength Grating Enabled On-Chip Ultra-Compact Optical True Time Delay Line. Sci. Rep. 2016, 6, 30235. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, H.; Khalil, M.; Dong, W.; Gasulla, I.; Capmany, J.; Chen, L.R. On-Chip Optical True Time Delay Lines Based on Subwavelength Grating Waveguides. Opt. Lett. 2021, 46, 1405–1408. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, L.; Lu, L.; Wang, X.; Chen, J. Integrated Optical Delay Line Based on a Loopback Arrayed Waveguide Grating for Radio-Frequency Filtering. IEEE Photonics J. 2020, 12, 6600911. [Google Scholar] [CrossRef]
- Sancho, J.; Bourderionnet, J.; Lloret, J.; Combrié, S.; Gasulla, I.; Xavier, S.; Sales, S.; Colman, P.; Lehoucq, G.; Dolfi, D.; et al. Integrable Microwave Filter Based on a Photonic Crystal Delay Line. Nat. Commun. 2012, 3, 1075. [Google Scholar] [CrossRef]
- Lin, C.Y.; Subbaraman, H.; Hosseini, A.; Wang, A.X.; Zhu, L.; Chen, R.T. Silicon Nanomembrane Based Photonic Crystal Waveguide Array for Wavelength-Tunable True-Time-Delay Lines. Appl. Phys. Lett. 2012, 101, 051101. [Google Scholar] [CrossRef]
- Schwelb, O. Transmission, Group Delay, and Dispersion in Single-Ring Optical Resonators and Add/Drop Filters—A Tutorial Overview. J. Light. Technol. 2004, 22, 1380–1394. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, Y. Passive Silicon Photonics Devices, 1st ed.; AIP Publishing: Melville, NY, USA, 2022; ISBN 978-0-7354-2428-9. [Google Scholar]
- Temperature Dependent Refractive Index Models. Available online: https://optics.ansys.com/hc/en-us/articles/360034901773-Temperature-dependent-refractive-index-models (accessed on 17 October 2024).
- Nedeljkovic, M.; Soref, R.; Mashanovich, G.Z. Free-Carrier Electrorefraction and Electroabsorption Modulation Predictions for Silicon Over the 1-14-Μm Infrared Wavelength Range. IEEE Photonics J. 2011, 3, 1171–1180. [Google Scholar] [CrossRef]
- Soldano, L.B.; Pennings, E.C.M. Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications. J. Light. Technol. 1995, 13, 615–627. [Google Scholar] [CrossRef]
- Rahim, A.; Hermans, A.; Wohlfeil, B.; Petousi, D.; Kuyken, B.; Van Thourhout, D.; Baets, R. Taking Silicon Photonics Modulators to a Higher Performance Level: State-of-the-Art and a Review of New Technologies. Adv. Photon. 2021, 3, 024003. [Google Scholar] [CrossRef]
- Shekhar, S.; Bogaerts, W.; Chrostowski, L.; Bowers, J.E.; Hochberg, M.; Soref, R.; Shastri, B.J. Roadmapping the next Generation of Silicon Photonics. Nat. Commun. 2024, 15, 751. [Google Scholar] [CrossRef]
- Chrostowski, L.; Hochberg, M. Silicon Photonics Design: From Devices to Systems, 1st ed.; Cambridge University Press: Cambridge, UK, 2015; ISBN 978-1-107-08545-9. [Google Scholar]
- Lu, Z.; Jhoja, J.; Klein, J.; Wang, X.; Liu, A.; Flueckiger, J.; Pond, J.; Chrostowski, L. Performance Prediction for Silicon Photonics Integrated Circuits with Layout-Dependent Correlated Manufacturing Variability. Opt. Express 2017, 25, 9712–9733. [Google Scholar] [CrossRef] [PubMed]
- Voronkov, G.; Zakoyan, A.; Ivanov, V.; Iraev, D.; Stepanov, I.; Yuldashev, R.; Grakhova, E.; Lyubopytov, V.; Morozov, O.; Kutluyarov, R. Design and Modeling of a Fully Integrated Microring-Based Photonic Sensing System for Liquid Refractometry. Sensors 2022, 22, 9553. [Google Scholar] [CrossRef]
- Zakoyan, A.G.; Aleksakina, Y.V.; Ivanov, V.V.; Grakhova, E.P.; Voronkov, G.S. Influence of Manufacturing Accuracy on the PIC-Based MRR Sensors Characteristics. In Proceedings of the Optical Technologies for Telecommunications 2022, Ufa, Russian, 23–26 November 2022; Bourdine, A.V., Morozov, O.G., Sultanov, A.H., Eds.; SPIE: Ufa, Russian, 2023; p. 30. [Google Scholar]
- Rito, P.; Garcia Lopez, I.; Petousi, D.; Zimmermann, L.; Kroh, M.; Lischke, S.; Knoll, D.; Micusik, D.; Awny, A.; Ulusoy, A.C.; et al. A Monolithically Integrated Segmented Linear Driver and Modulator in EPIC 0.25-Μm SiGe:C BiCMOS Platform. IEEE Trans. Microw. Theory Tech. 2016, 64, 4561–4572. [Google Scholar] [CrossRef]
- Sinatkas, G.; Christopoulos, T.; Tsilipakos, O.; Kriezis, E.E. Electro-Optic Modulation in Integrated Photonics. J. Appl. Phys. 2021, 130, 010901. [Google Scholar] [CrossRef]
- Giuglea, A.; Belfiore, G.; Khafaji, M.; Henker, R.; Petousi, D.; Winzer, G.; Zimmermann, L.; Ellinger, F. Comparison of Segmented and Traveling-Wave Electro-Optical Transmitters Based on Silicon Photonics Mach-Zehnder Modulators. In Proceedings of the 2018 Photonics in Switching and Computing (PSC), Limassol, Cyprus, 19–21 September 2018; IEEE: Limassol, Cyprus, 2018; pp. 1–3. [Google Scholar]
- Xing, J.X.J.; Li, Z.L.Z.; Zhou, P.Z.P.; Gong, Y.G.Y.; Yu, Y.Y.Y.; Tan, M.T.M.; Yu, J.Y.J. Compact Silicon-on-Insulator-Based 2 × 2 Mach–Zehnder Interferometer Electro-Optic Switch with Low Crosstalk. Chin. Opt. Lett. 2015, 13, 061301–061304. [Google Scholar] [CrossRef]
- Ying, Z.; Wang, Z.; Zhao, Z.; Dhar, S.; Pan, D.Z.; Soref, R.; Chen, R.T. Comparison of Microrings and Microdisks for High-Speed Optical Modulation in Silicon Photonics. Appl. Phys. Lett. 2018, 112, 111108. [Google Scholar] [CrossRef]
- Zubkova, E.; An, P.; Kovalyuk, V.; Korneev, A.; Ferrari, S.; Pernice, W.; Goltsman, G. Integrated Bragg Waveguides as an Efficient Optical Notch Filter on Silicon Nitride Platform. J. Phys.: Conf. Ser. 2017, 917, 062042. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, J. Invited Article: Electrically Tunable Silicon-Based on-Chip Microdisk Resonator for Integrated Microwave Photonic Applications. APL Photonics 2016, 1, 080801. [Google Scholar] [CrossRef]
- Yao, J. Microwave Photonics for High-Resolution and High-Speed Interrogation of Fiber Bragg Grating Sensors. Fiber Integr. Opt. 2015, 34, 204–216. [Google Scholar] [CrossRef]
- DAC161S055 Precision 16-Bit, Buffered Voltage-Output DAC; Texas Instruments: Dallas, TX, USA, 2012.
- Stepanov, I.V.; Talynev, E.A.; Ivanov, A.A.; Kutluyarov, R.V.; Grakhova, E.P. Design of a Photonic Integrated Device with an On-Chip k-Clock and Tunable Reference Arm for Swept-Source Optical Coherence Tomography. J-BPE 2023, 9, 030317. [Google Scholar] [CrossRef]
- Stepanov, I.V.; Ivanov, V.V.; Lopukhova, E.A.; Grakhova, E.P. Photonic Integrated Circuit Model for Phased Antenna Array Beam Steering. In Proceedings of the Optical Technologies for Telecommunications 2022, Ufa, Russian, 23–26 November 2022; Bourdine, A.V., Morozov, O.G., Sultanov, A.H., Eds.; SPIE: Ufa, Russian, 2023; p. 34. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, V.; Stepanov, I.; Voronkov, G.; Kutluyarov, R.; Grakhova, E. An Approach to Reduce Tuning Sensitivity in the PIC-Based Optoelectronic Oscillator by Controlling the Phase Shift in Its Feedback Loop. Micromachines 2025, 16, 32. https://doi.org/10.3390/mi16010032
Ivanov V, Stepanov I, Voronkov G, Kutluyarov R, Grakhova E. An Approach to Reduce Tuning Sensitivity in the PIC-Based Optoelectronic Oscillator by Controlling the Phase Shift in Its Feedback Loop. Micromachines. 2025; 16(1):32. https://doi.org/10.3390/mi16010032
Chicago/Turabian StyleIvanov, Vladislav, Ivan Stepanov, Grigory Voronkov, Ruslan Kutluyarov, and Elizaveta Grakhova. 2025. "An Approach to Reduce Tuning Sensitivity in the PIC-Based Optoelectronic Oscillator by Controlling the Phase Shift in Its Feedback Loop" Micromachines 16, no. 1: 32. https://doi.org/10.3390/mi16010032
APA StyleIvanov, V., Stepanov, I., Voronkov, G., Kutluyarov, R., & Grakhova, E. (2025). An Approach to Reduce Tuning Sensitivity in the PIC-Based Optoelectronic Oscillator by Controlling the Phase Shift in Its Feedback Loop. Micromachines, 16(1), 32. https://doi.org/10.3390/mi16010032