Series/Parallel Switching for Increasing Power Extraction from Thermoelectric Power Generators
Abstract
1. Introduction
2. Design
3. Effect on Extracted Power of Switching Circuit Configuration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lapena, O.L.; Penella, M.T.; Gasulla, M. A New MPPT Method for Low-Power Solar Energy Harvesting. IEEE Trans. Ind. Electron. 2010, 57, 3129–3138. [Google Scholar] [CrossRef]
- Edla, M.; Lim, Y.Y.; Padilla, R.V.; Deguchi, M. An Improved Rectifier Circuit for Piezoelectric Energy Harvesting from Human Motion. Appl. Sci. 2021, 11, 2008. [Google Scholar] [CrossRef]
- Liu, H.; Fu, H.; Sun, L.; Lee, C.; Yeatman, E.M. Hybrid energy harvesting technology: From materials, structural design, system integration to applications. Renew. Sustain. Energy Rev. 2021, 137, 110473. [Google Scholar] [CrossRef]
- Harasa, M.; Skotnicki, T. Thermoelectricity for IoT—A review. Nano Energy 2018, 54, 461–476. [Google Scholar] [CrossRef]
- Chen, Z.G.; Shi, X.; Zhao, L.D.; Zou, J. High-performance SnSe thermoelectric materials: Progress and future challenge. Prog. Mater. Sci. 2018, 97, 283–346. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, S.; Qiu, P.; Peng, L.; Wei, T.R.; Zhang, Z.; Shi, X.; Chen, L. Flexible thermoelectrics based on ductile semiconductors. Science 2022, 377, 854–858. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Jie, Q.; Kim, H.S.; Ren, Z. Current progress and future challenges in thermoelectric power generation: From materials to devices. Acta Mater. 2015, 87, 357–376. [Google Scholar] [CrossRef]
- Bharti, M.; Singh, A.; Samanta, S.; Aswal, D.K. Conductive polymers for thermoelectric power generation. Prog. Mater. Sci. 2018, 93, 270–310. [Google Scholar] [CrossRef]
- Suemori, K.; Hoshino, S.; Kamata, T. Flexible and Lightweight Thermoelectric Generators Composed of Carbon Nanotube-Polystyrene Composites Printed on Film Substrate. Appl. Phys. Lett. 2013, 103, 153902. [Google Scholar] [CrossRef]
- Sugahara, T.; Ekubaru, Y.; Nong, N.V.; Kagami, N.; Ohata, K.; Hung, L.T.; Okajima, M.; Nambu, S.; Suganuma, K. Fabrication with Semiconductor Packaging Technologies and Characterization of a Large-Scale Flexible Thermoelectric Module. Adv. Mater. Technol. 2019, 4, 1800556. [Google Scholar] [CrossRef]
- Petsagkourakis, I.; Tybrandt, K.; Crispin, X.; Ohkubo, I.; Satoh, N.; Mori, T. Thermoelectric Materials and Applications for Energy Harvesting Power Generation. Sci. Technol. Adv. Mater. 2018, 19, 836–862. [Google Scholar] [CrossRef]
- Liu, X.; Du, Y.; Meng, Q.; Shen, S.Z.; Xu, J. Flexible Thermoelectric Power Generators Fabricated Using Graphene/PEDOT:PSS Nanocomposite Films. J. Mater. Sci. Mater. Electron. 2019, 30, 20369–20375. [Google Scholar] [CrossRef]
- Lossec, M.; Multon, B.; Ben Ahmed, H.; Goupil, C. Thermoelectric Generator Placed on The Human Body: System Modeling and Energy Conversion Improvements. EPJ Appl. Phys. 2010, 52, 11103. [Google Scholar] [CrossRef]
- Li, C.; Jiang, F.; Liu, C.; Liu, P.; Xu, J. Present and Future Thermoelectric Materials toward Wearable Energy Harvesting. Appl. Mater. Today 2019, 15, 543–557. [Google Scholar] [CrossRef]
- Mita, K. Development of Thermal Interface Materials for IT-Related Applications (Silicone type TIM). Nippon Gomu Kyokaishi 2011, 78, 153–157. [Google Scholar] [CrossRef]
- Hunter, M.A. Light Emitting Diode Light Strip. U.S. Patent 6,283,612 B1, 13 March 2000. [Google Scholar]
- Jeong, S.H.; Cruz, F.J.; Chen, S.; Gravier, L.; Liu, J.; Wu, Z.; Hjort, K.; Zhang, S.-L.; Zhang, Z.-B. Stretchable Thermoelectric Generators Metallized with Liquid Alloy. ACS Appl. Mater. Interfaces 2017, 9, 15791–15797. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; We, J.H.; Cho, B.J. A Wearable Thermoelectric Generator Fabricated on a Glass Fabric. Energy Environ. Sci. 2014, 7, 1959–1965. [Google Scholar] [CrossRef]
- Bautista, S.C.; Eladawy, A.; Mohieldin, A.N.; Sinencio, E.S. Boost Converter with Dynamic Input Impedance Matching for Energy Harvesting with Multi-Array Thermoelectric Generators. IEEE Trans. Ind. Electron. 2014, 61, 5345–5352. [Google Scholar] [CrossRef]
- Jaziri, N.; Boughamoura, A.; Müller, J.; Mezghani, B.; Tounsi, F.; Ismail, M. A comprehensive review of Thermoelectric Generators: Technologies and common applications. Energy Rep. 2020, 6, 264–287. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, B.; Guo, Z.; Wang, J.; Zhu, M.; Li, Z.; Yu, T. Dynamic reconfiguration for TEG systems under heterogeneous temperature distribution via adaptive coordinated seeker. Prot. Control. Mod. Power Syst. 2022, 7, 38. [Google Scholar] [CrossRef]
- Patra, S.; Muthe, K.P.; Prakash, D.; Singh, A. Low-Voltage Self-Operating MPPT Controlled Boost Converter for Thermoelectric Power Generator. IEEE J. Emerg. Sel. Top. Ind. Electron. 2023, 4, 1045–1054. [Google Scholar] [CrossRef]
- Bijukumar, B.; Chakkarapani, M.; Ganesan, S.I. On the Importance of Blocking Diodes in Thermoelectric Generator Arrays and Their Effect on MPPs under Temperature Mismatch Conditions. IEEE Trans. Energy Convers. 2023, 38, 2730–2743. [Google Scholar] [CrossRef]
2-Series/1-Parallel | 1-Series/2-Parallel | |
---|---|---|
ΔT = 3.0 K | OPS1: 195 ± 1.3 µW | OPP1: 177 ± 1.6 µW |
ΔT = 4.0 K | OPS2: 283 ± 1.5 µW | OPP2: 348 ± 2.2 µW |
2-Series/1-Parallel | 1 Series/2 Parallel | |
---|---|---|
ΔT = 3.0 K | t1: 69.7 s, t2: 30.6 s | t1: 78.2 s, t2: 32.4 s |
ΔT = 4.0 K | t1: 66.5 s, t2: 27.6 s | t1: 65.7 s, t2: 27.0 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terashima, S.; Sorimachi, R.; Iwase, E. Series/Parallel Switching for Increasing Power Extraction from Thermoelectric Power Generators. Micromachines 2024, 15, 1015. https://doi.org/10.3390/mi15081015
Terashima S, Sorimachi R, Iwase E. Series/Parallel Switching for Increasing Power Extraction from Thermoelectric Power Generators. Micromachines. 2024; 15(8):1015. https://doi.org/10.3390/mi15081015
Chicago/Turabian StyleTerashima, Shingo, Ryuji Sorimachi, and Eiji Iwase. 2024. "Series/Parallel Switching for Increasing Power Extraction from Thermoelectric Power Generators" Micromachines 15, no. 8: 1015. https://doi.org/10.3390/mi15081015
APA StyleTerashima, S., Sorimachi, R., & Iwase, E. (2024). Series/Parallel Switching for Increasing Power Extraction from Thermoelectric Power Generators. Micromachines, 15(8), 1015. https://doi.org/10.3390/mi15081015