Temperature Characteristics Modeling for GaN PA Based on PSO-ELM
Abstract
:1. Introduction
2. Modeling Object and Methods
2.1. Modeling Object
2.2. Modeling Methods
2.2.1. ELM
2.2.2. PSO-ELM
2.3. Modeling Process
2.3.1. Modeling of ELM
2.3.2. Modeling of PSO-ELM
3. Results Discussions of Modeling
3.1. ELM Prediction Model
3.2. PSO-ELM Prediction Model
3.3. Comparison of Modeling Results between the Two Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ghavidel, A.; Tamjid, F.; Fathy, A. GaN widening possibilties for PAs: Wide-band GaN power amplifiers utilize the technology’s special properties. IEEE Microw. Mag. 2017, 18, 46–55. [Google Scholar] [CrossRef]
- Liu, C.; Shi, C.J.R. Design of the Class-E Power Amplifier Considering the Temperature Effect of the Transistor On-Resistance for Sensor Applications. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 1705–1709. [Google Scholar] [CrossRef]
- Alim, M.A.; Rezazadeh, A.A. Temperature-Dependent DC and Small-Signal Analysis of AlGaAs/InGaAs pHEMT for High-Frequency Applications. IEEE Trans. Electron Devices 2016, 63, 1005–1012. [Google Scholar] [CrossRef]
- Qi, Q.; Chen, Z.A. A K-Band CMOS Amplifier With Temperature Compensation for Gain Variation Reduction. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 150–152. [Google Scholar] [CrossRef]
- Shin, S.C.; Leung, M.C.H.; Hsiao, S.W. A temperature variation compensated 60-GHz low-noise amplifier in 90-nm CMOS technology. In Proceedings of the Asia-Pacific Microwave Conference, Melbourne, VIC, Australia, 5–8 December 2011; pp. 211–214. [Google Scholar]
- Zhao, H.; Zhou, S.H.; Nie, M.N. Experimentally investigating the performance degradation of the CMOS PA at different temperatures. AIP Adv. 2021, 11, 115205–115212. [Google Scholar]
- Altet, J.; Aragones, X.; Barajas, E.; Gisbert, X.; Martínez, S.; Mateo, D. Aging compensation in a class-A high-frequency amplifier with DC temperature measurements. Sensors 2023, 23, 7069. [Google Scholar] [CrossRef] [PubMed]
- Pour, F.L.; Ha, D.S. A temperature compensated 5 GHz GaN on SiC power amplifier. In Proceedings of the IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), Springfield, MA, USA, 9–12 August 2020; pp. 549–553. [Google Scholar]
- Zhou, S.H. Experimentally investigating the degradation of small-signal gain for a GaN class-AB dual-band power amplifier under high temperature and humidity conditions. AIP Adv. 2020, 10, 125219–125223. [Google Scholar] [CrossRef]
- Duraij, M.; XIao, Y.; Zsurzsan, G.; Zhang, Z. A Comparative Study on Class AB and Class D Amplifier Topologies for High Temperature Power Line Communication Circuits. In Proceedings of the IEEE International Symposium on Power Line Communications and its Applications (ISPLC), Aachen, Germany, 26–27 October 2021; pp. 102–107. [Google Scholar]
- Zhou, S.H.; Fu, H.P.; Ma, J.G.; Zhang, Q.J. A Neural Network Modeling Approach to Power amplifiers Taking into Account Temperature Effects. In Proceedings of the IEEE/MTT-S International Microwave Symposium-IMS, Philadelphia, PA, USA, 10–15 June 2018; pp. 1028–1031. [Google Scholar]
- Zhou, S.; Jha, A.K. Characteristics Modeling of GaN Class-AB Dual-Band PA Under Different Temperature and Humidity Conditions. IEEE Access 2021, 9, 121632–121644. [Google Scholar] [CrossRef]
- Zhou, S.H.; Yang, C.; Wang, J. Support Vector Machine–Based Model for 2.5–5.2 GHz CMOS Power Amplifier. Micromachines 2022, 13, 1012–1013. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhou, S.H. BPNN-Based Behavioral Modeling of the S-Parameter Variation Characteristics of PAs with Frequency at Different Temperatures. Micromachines 2022, 13, 1831. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Wang, X.Z.; Wu, H.F. X-parameter modeling investigation for microwave power devices. Microelectron. J. 2022, 127, 105523–105526. [Google Scholar] [CrossRef]
- Zhou, S.H.; Yang, C.; Wang, J. Modeling of key specifications for RF amplifiers using the extreme learning machine. Micromachines 2022, 13, 693. [Google Scholar] [CrossRef]
- Lin, Q.; Jia, L.; Wu, H.; Wang, X.Z. Temperature behavior modeling based on resilient BPNN for a GaAs pHEMT high gain MMIC PA. Int. J. Numer. Model. Electron. Netw. Devices Fields 2024, 37, 3161–3164. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feed forward neural networks. In Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), Budapest, Hungary, 25–29 July 2004; pp. 985–990. [Google Scholar]
- Saurav, S.; Saini, R.; Singh, S. Facial Expression Recognition Using Dynamic Local Ternary Patterns with Kernel Extreme Learning Machine Classifier. IEEE Access 2021, 9, 120844–120868. [Google Scholar] [CrossRef]
- Peng, Y.; Kang, H.; Chen, Y. A Research on Stock Index Prediction Based on Multiple Linear Regression and ELM Neural Network. In Proceedings of the 6th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 9–11 April 2021; pp. 254–259. [Google Scholar]
- Mao, X.; Xiao, X.; Lu, Y. PolSAR Data-Based Land Cover Classification Using Dual-Channel Watershed Region-Merging Segmentation and Bagging-ELM. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Iwahana, K.; Takemura, T.; Cheng, J.C.; Ashizawa, N.; Umeda, N.; Sato, K.; Kawakami, R.; Shimizu, R.; Chinen, Y.; Yanai, N. MADMAX: Browser-Based Malicious Domain Detection Through Extreme Learning Machin. IEEE Access 2021, 9, 78293–78314. [Google Scholar] [CrossRef]
- Almayan, H.; Mayyan, W.A. Improving accuracy of students’ final grade prediction model using PSO. In Proceedings of the 2016 6th International Conference on Information Communication and Management (ICICM), Hatfield, UK, 29–31 October 2016; pp. 35–39. [Google Scholar]
- Wu, T.; Wang, X.Z.; Lin, Q.; Bai, H. Large Signal Modeling for Microwave Power Devices Based on LSTM. In Proceedings of the 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 17–19 June 2022; pp. 1553–1556. [Google Scholar]
- Knoben, W.J.M.; Freer, J.E.; Woods, R.A. Inherent benchmark or not Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrol. Earth Syst. Sci. 2019, 23, 4323–4331. [Google Scholar] [CrossRef]
- Calik, N.; Güneş, F.; Koziel, S.; Pietrenko-Dabrowska, A.; Belen, M.A.; Mahouti, P. Deep-learning-based precise characterization of microwave transistors using fully-automated regression surrogates. Sci. Rep. 2023, 13, 1445. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Zhang, J.F.; Zhang, J.C. Nitride Wide Band Gap Semiconductor Material and Electronic Devices, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 1–392. [Google Scholar]
- Lin, Q.; Wang, X.Z.; Wu, H.F. Approach for Extreme Learning Machine-Based Microwave Power Device Modeling. IEEE Access 2022, 10, 127806–127816. [Google Scholar] [CrossRef]
Vectors | Range | Step Size | |
---|---|---|---|
Input Vector | Frequency(F) | 0.2 GHz–5 GHz | 20 MHz |
Input power (Pin) | 0 dBm–30 dBm | 0.1 dBm | |
Temperature(T) | −40 °C–120 °C | 40 °C | |
Output Vector | Small signal gain (S21) | - | - |
Input return loss (S11) | |||
Output return loss (S22) | |||
Output power (Pout) | |||
Gain |
Model | Number of Neurons in the Hidden Layer | MSE |
---|---|---|
ELM | 2 | 0.1908 |
4 | 0.1248 | |
6 | 0.0800 | |
8 | 0.0948 | |
10 | 0.0739 | |
12 | 0.0109 | |
14 | 0.9903 | |
PSO-ELM | 2 | 0.0720 |
4 | 0.0060 | |
6 | 0.0083 | |
8 | 0.0090 | |
10 | 0.0055 | |
12 | 0.0006 | |
14 | 0.0063 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Q.; Wang, M. Temperature Characteristics Modeling for GaN PA Based on PSO-ELM. Micromachines 2024, 15, 1008. https://doi.org/10.3390/mi15081008
Lin Q, Wang M. Temperature Characteristics Modeling for GaN PA Based on PSO-ELM. Micromachines. 2024; 15(8):1008. https://doi.org/10.3390/mi15081008
Chicago/Turabian StyleLin, Qian, and Meiqian Wang. 2024. "Temperature Characteristics Modeling for GaN PA Based on PSO-ELM" Micromachines 15, no. 8: 1008. https://doi.org/10.3390/mi15081008
APA StyleLin, Q., & Wang, M. (2024). Temperature Characteristics Modeling for GaN PA Based on PSO-ELM. Micromachines, 15(8), 1008. https://doi.org/10.3390/mi15081008