Universal and Versatile Magnetic Connectors for Microfluidic Devices
Abstract
1. Introduction
2. Materials and Methods
2.1. Magnetic Connectors
2.2. Materials Tested
2.3. Droplet Generator Microfabrication
2.4. Sealing Pressure Measurement
2.5. Sealing Pressure vs. Magnetic Pressure
2.6. Droplet Generation and Long-Term Stability
3. Results
3.1. Simple Design and Fabrication
3.2. Robust Sealing Performances
3.3. Long-Term Stability of the Magnetic Connectors
4. Conclusions
5. Note
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Balowski, J.; Phillips, C.; Phillips, R.; Sims, C.E.; Allbritton, N.L. Benchtop micromolding of polystyrene by soft lithography. Lab A Chip 2011, 11, 3089–3097. [Google Scholar] [CrossRef]
- Zhou, K.; Papautsky, I. Optimization of COC hot embossing with soft PDMS tools. In Proceedings of the MOEMS-MEMS 2007 Micro and Nanofabrication, San Jose, CA, USA, 22 January 2007; Volume 6465. [Google Scholar]
- Jena, R.K.; Yue, C.Y.; Lam, Y.C. Micro fabrication of cyclic olefin copolymer (COC) based microfluidic devices. Microsyst. Technol. 2012, 18, 159–166. [Google Scholar] [CrossRef]
- Tsao, C.-W.; Liu, J.; DeVoe, D.L. Droplet formation from hydrodynamically coupled capillaries for parallel microfluidic contact spotting. J. Micromechanics Microengineering 2008, 18, 025013. [Google Scholar] [CrossRef]
- Young, E.W.K.; Berthier, E.; Guckenberger, D.J.; Sackmann, E.; Lamers, C.; Meyvantsson, I.; Huttenlocher, A.; Beebe, D.J. Rapid Prototyping of Arrayed Microfluidic Systems in Polystyrene for Cell-Based Assays. Anal. Chem. 2011, 83, 1408–1417. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Bontrager-Singer, J.; Zhu, L. A 3D microfluidic device fabrication method using thermopress bonding with multiple layers of polystyrene film. J. Micromechanics Microengineering 2015, 25, 10. [Google Scholar] [CrossRef]
- Mair, D.A.; Rolandi, M.; Snauko, M.; Noroski, R.; Svec, F.; Fréchet, J.M.J. Room-Temperature Bonding for Plastic High-Pressure Microfluidic Chips. Anal. Chem. 2007, 79, 5097–5102. [Google Scholar] [CrossRef] [PubMed]
- Keller, N.; Nargang, T.M.; Runck, M.; Kotz, F.; Striegel, A.; Sachsenheimer, K.; Klemm, D.; Länge, K.; Worgull, M.; Richter, C.; et al. Tacky cyclic olefin copolymer: A biocompatible bonding technique for the fabrication of microfluidic channels in COC. Lab A Chip 2016, 16, 1561–1564. [Google Scholar] [CrossRef] [PubMed]
- Hidetoshi, S.; Jun, M.; Shuichi, S. Low-Temperature Polymer Bonding Using Surface Hydrophilic Treatment for Chemical/Bio Microchips. In Solid State Circuits Technologies; InTech: London, UK, 2010. [Google Scholar]
- Gleichweit, E.; Baumgartner, C.; Diethardt, R.; Murer, A.; Sallegger, W.; Werkl, D.; Köstler, S. UV/Ozone Surface Treatment for Bonding of Elastomeric COC-Based Microfluidic Devices. Proceedings 2018, 2, 943. [Google Scholar] [CrossRef]
- Serra, M.; Pereiro, I.; Yamada, A.; Viovy, J.-L.; Descroix, S.; Ferraro, D. A simple and low-cost chip bonding solution for high pressure, high temperature and biological applications. Lab A Chip 2017, 17, 629–634. [Google Scholar] [CrossRef]
- Jeon, J.S.; Chung, S.; Kamm, R.D.; Charest, J.L. Hot embossing for fabrication of a microfluidic 3D cell culture platform. Biomed. Microdevices 2011, 13, 325–333. [Google Scholar] [CrossRef]
- Miserere, S.; Mottet, G.; Taniga, V.; Descroix, S.; Viovy, J.-L.; Malaquin, L. Fabrication of thermoplastics chips through lamination based techniques. Lab A Chip 2012, 12, 1849–1856. [Google Scholar] [CrossRef] [PubMed]
- Song, I.-H.; Park, T. Connector-Free World-to-Chip Interconnection for Microfluidic Devices. Micromachines 2019, 10, 166. [Google Scholar] [CrossRef]
- Pfreundt, A.; Andersen, K.B.; Dimaki, M.; Svendsen, W.E. An easy-to-use microfluidic interconnection system to create quick and reversibly interfaced simple microfluidic devices. J. Micromechanics Microengineering 2015, 25, 115010. [Google Scholar] [CrossRef]
- Ecker, R.; Mitteramskogler, T.; Langwiesner, M.; Fuchsluger, A.; Hintermüller, M.A.; Jakoby, B. A Self-Sealing Modular Microfluidic System Using PDMS Blocks with Magnetic Connections. IEEE Access 2023, 11, 82882–82893. [Google Scholar] [CrossRef]
- Ong, L.J.Y.; Ching, T.; Chong, L.H.; Arora, S.; Li, H.; Hashimoto, M.; DasGupta, R.; Yuen, P.K.; Toh, Y.-C. Self-aligning Tetris-Like (TILE) modular microfluidic platform for mimicking multi-organ interactions. Lab A Chip 2019, 19, 2178–2191. [Google Scholar] [CrossRef] [PubMed]
- Yuen, P.K. A reconfigurable stick-n-play modular microfluidic system using magnetic interconnects. Lab A Chip 2016, 16, 3700–3707. [Google Scholar] [CrossRef] [PubMed]
- Atencia, J.; Cooksey, G.A.; Jahn, A.; Zook, J.M.; Vreeland, W.N.; Locascio, L.E. Magnetic connectors for microfluidic applications. Lab A Chip 2010, 10, 246–249. [Google Scholar] [CrossRef]
- Duffy, D.C.; McDonald, J.C.; Schueller, O.J.A.; Whitesides, G.M. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Anal. Chem. 1998, 70, 4974–4984. [Google Scholar] [CrossRef]
- Quan, P.-L.; Alvarez-Amador, M.; Jiang, Y.; Sauzade, M.; Brouzes, E. Robust and rapid partitioning in thermoplastic. Analyst 2024, 149, 100–107. [Google Scholar] [CrossRef]
- Scanga, R.; Chrastecka, L.; Mohammad, R.; Meadows, A.; Quan, P.-L.; Brouzes, E. Click Chemistry Approaches to Expand the Repertoire of PEG-based Fluorinated Surfactants for Droplet Microfluidics. RSC Adv. 2018, 8, 12960–12974. [Google Scholar] [CrossRef]
- Holtze, C.; Rowat, A.C.; Agresti, J.J.; Hutchison, J.B.; Angilè, F.E.; Schmitz, C.H.J.; Köster, S.; Duan, H.; Humphry, K.J.; Scanga, R.A.; et al. Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab A Chip 2008, 8, 1632–1639. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Datta, A.; Berg, J.M.; Gangopadhyay, S. Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J. Microelectromechanical Syst. 2005, 14, 590–597. [Google Scholar] [CrossRef]
- Eddings, M.A.; Johnson, M.A.; Gale, B.K. Determining the optimal PDMS–PDMS bonding technique for microfluidic devices. J. Micromechanics Microengineering 2008, 18, 067001. [Google Scholar] [CrossRef]
- Ward, T.; Faivre, M.; Abkarian, M.; Stone, H.A. Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping. Electrophoresis 2005, 26, 3716–3724. [Google Scholar] [CrossRef]
Magnet Reference Number | Outer Diameter (OD) (Inch) | Inner Diameter (ID) (Inch) | Thickness (Inch) | Pull-Up Force § (lbs) |
---|---|---|---|---|
R422 | 1/4 | 1/8 | 1/8 | 1.8 |
R422-N52 | 1/4 | 1/8 | 1/8 | 2.23 |
R636 | 3/8 | 3/16 | 3/8 | 6.2 |
R842 | 1/2 | 1/4 | 1/8 | 5.35 |
R844 | 1/2 | 1/4 | 1/4 | 8.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez-Amador, M.; Salimov, A.; Brouzes, E. Universal and Versatile Magnetic Connectors for Microfluidic Devices. Micromachines 2024, 15, 803. https://doi.org/10.3390/mi15060803
Alvarez-Amador M, Salimov A, Brouzes E. Universal and Versatile Magnetic Connectors for Microfluidic Devices. Micromachines. 2024; 15(6):803. https://doi.org/10.3390/mi15060803
Chicago/Turabian StyleAlvarez-Amador, Maria, Amir Salimov, and Eric Brouzes. 2024. "Universal and Versatile Magnetic Connectors for Microfluidic Devices" Micromachines 15, no. 6: 803. https://doi.org/10.3390/mi15060803
APA StyleAlvarez-Amador, M., Salimov, A., & Brouzes, E. (2024). Universal and Versatile Magnetic Connectors for Microfluidic Devices. Micromachines, 15(6), 803. https://doi.org/10.3390/mi15060803