Controlling the Collective Behaviors of Ultrasound-Driven Nanomotors via Frequency Regulation
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, D.L.; Gao, C.Y.; Si, T.Y.; Li, Z.S.; Guo, B.; He, Q. Near-infrared light propelled motion of needlelike liquid metal nanoswimmers. Colloids Surf. A 2021, 661, 125865. [Google Scholar] [CrossRef]
- Walter, F.P.; Ayusman, S.; Thomas, E.M. Motility of Catalytic Nanoparticles through Self-Generated Forces. Chem. Eur. J. 2005, 11, 6462–6470. [Google Scholar]
- Zhang, J.H.; Laskar, A.; Song, J.Q.; Shklyaev, O.E.; Mou, F.Z.; Guan, J.G.; Balazs, A.C.; Sen, A. Light-Powered, Fuel-Free Oscillation, Migration, and Reversible Manipulation of Multiple Cargo Types by Micromotor Swarms. ACS Nano 2023, 17, 251–262. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, D.C.; Huang, X.F.; Yi, L.Z.; Liu, M.; Pan, L.Q. Ultrafast Bubble-Propelled and Magnetic-Field-Navigated Porous Catalytic Janus Micromotor. J. Nanosci. Nanotechnol. 2019, 19, 4154–4159. [Google Scholar] [CrossRef]
- Li, J.J.; Tan, W.H. A Single DNA Molecule Nanomotor. Nano Lett. 2002, 2, 315–318. [Google Scholar] [CrossRef]
- Orozco, J.; Allan, C.; Cheng, G.Z.; Sattayasamitsathit, S.; Gao, W.; Feng, X.M.; Shen, T.F.; Wang, J. Molecularly Imprinted Polymer-Based Catalytic Micromotors for Selective Protein Transport. J. Am. Chem. Soc. 2013, 135, 5336–5339. [Google Scholar] [CrossRef]
- Feng, Y.B.; Zhao, J.N.; Zhao, Z.H.; Chen, K.X.; Li, P.S.; Cong, J.W.; Pan, L.Q.; Liu, M.; Liu, Y.M. Cooperative behavior of miniature magnetic swimmers in uniform magnetic fields. Appl. Phys. Express 2023, 16, 067001. [Google Scholar] [CrossRef]
- Wang, D.L.; Gao, C.Y.; Wang, W.; Sun, M.M.; Guo, B.; Xie, H.; He, Q. Shape-Transformable, Fusible Rodlike Swimming Liquid Metal Nanomachine. ACS Nano 2018, 12, 10212–10220. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Li, T.L.; Xu, L.T.; Kiristi, M.; Liu, W.J.; Wu, Z.G.; Wang, J. Magneto−Acoustic Hybrid Nanomotor. Nano Lett. 2015, 15, 4814–4821. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.M.; Ge, D.Q.; Cong, J.W.; Piao, H.G.; Huang, X.F.; Xu, Y.L.; Lu, G.D.; Pan, L.Q.; Liu, M. Magnetically Powered Annelid-Worm-Like Microswimmers. Small 2018, 14, 1704546. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.Y.; Xie, L.; Zeng, J.; Yan, M.; Qiu, B.L.; Wang, X.Y.; Zhou, S.; Zhang, X.; Zeng, H.; Liang, Q.R.; et al. Interfacial Superassembly of Light-Responsive Mechanism-Switchable Nanomotors with Tunable Mobility and Directionality. ACS Appl. Mater. Interfaces 2022, 14, 15517–15528. [Google Scholar] [CrossRef]
- Giardina, I. Collective Animal Behavior. Anim. Behav. 2011, 82, 608. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, G.Q.; Feng, Y.B.; Kuai, Y.B.; Chen, K.X.; Cong, J.W.; Piao, H.G.; Liu, Y.M.; Pan, L.Q. Highly Efficient Magnetic Propulsion of NiFe Nanorod-Based Miniature Swimmers in Three Dimensions. ACS Appl. Mater. Interfaces 2021, 13, 58898–58907. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Y.X.; Kuai, Y.B.; Cong, J.W.; Xu, Y.L.; Piao, H.G.; Pan, L.Q.; Liu, Y.M. Magnetically Powered Shape-Transformable Liquid Metal Micromotors. Small 2019, 15, 1905446. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; He, X.L.; Jiang, H.D.; Xing, Y.; Fu, B.; Hu, C.Z. Enhanced and Robust Directional Propulsion of Light-Activated Janus Micromotors by Magnetic Spinning and the Magnus Effect. ACS Appl. Mater. Interfaces 2022, 14, 36027–36037. [Google Scholar] [CrossRef] [PubMed]
- Li, S.S.; Liu, D.; Hu, Y.P.; Su, Z.J.; Zhang, X.N.; Guo, R.R.; Li, D.; Lu, Y. Soft Magnetic Microrobot Doped with Porous Silica for StabilityEnhanced Multimodal Locomotion in a Nonideal Environment. ACS Appl. Mater. Interfaces 2022, 14, 10856–10874. [Google Scholar] [CrossRef] [PubMed]
- Song, S.-J.; Mayorga-Martinez, C.C.; Vyskočil, J.; Častorálová, M.; Ruml, T.; Pumera, M. Precisely Navigated Biobot Swarms of Bacteria Magnetospirillum magneticum for Water Decontamination. ACS Appl. Mater. Interfaces 2023, 15, 7023–7029. [Google Scholar] [CrossRef]
- Kichatov, B.; Korshunov, A.; Sudakov, V.; Petrov, O.; Gubernov, V.; Korshunova, E.; Kolobov, A.; Kiverin, A. Magnetic Nanomotors in Emulsions for Locomotion of Microdroplets. ACS Appl. Mater. Interfaces 2022, 14, 10976–10986. [Google Scholar] [CrossRef]
- Li, N.; Huang, G.W.; Liu, Y.; Qu, C.B.; Li, M.; Xiao, H.M. Performance Deficiency Improvement of CNT-Based Strain Sensors by Magnetic-Induced Patterning. ACS Appl. Mater. Interfaces 2023, 15, 5774–5786. [Google Scholar] [CrossRef]
- Huang, T.; Li, B.; Wang, H.; Granick, S. Molecules, the Ultimate Nanomotor: Linking Chemical Reaction Intermediates to their Molecular Diffusivity. ACS Nano 2021, 15, 14947–14953. [Google Scholar] [CrossRef]
- Liu, R.; Sen, A. Autonomous Nanomotor Based on Copper–Platinum Segmented Nanobattery. J. Am. Chem. Soc. 2011, 133, 20064–20067. [Google Scholar] [CrossRef] [PubMed]
- Mou, F.Z.; Li, X.F.; Xie, Q.; Zhang, J.H.; Xiong, K.; Xu, L.L.; Guan, J.G. Active Micromotor Systems Built from Passive Particles with Biomimetic Predator−Prey Interactions. ACS Nano 2020, 14, 406–414. [Google Scholar] [CrossRef]
- Karshalev, E.; Berta, E.D.; Wang, J. Micromotors for “Chemistry-on-the-Fly”. J. Am. Chem. Soc. 2018, 140, 3810–3820. [Google Scholar] [CrossRef]
- Wang, J.H.; Xiong, Z.; Liu, M.; Li, X.M.; Zheng, J.; Zhan, X.J.; Ding, W.T.; Chen, J.N.; Li, X.C.; Li, X.D.; et al. Rational Design of Reversible Redox Shuttle for Highly Efficient Light-Driven Microswimmer. ACS Nano 2020, 14, 3272–3280. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Castro, L.A.; Hoyos, M.; Mallouk, T.E. Autonomous Motion of Metallic Microrods Propelled by Ultrasound. ACS Nano 2012, 6, 6122–6132. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gradilla, V.; Orozco, J.; Sattayasamitsathit, S.; Soto, F.; Kuralay, F.; Pourazary, A.; Katzenberg, A.; Gao, W.; Shen, Y.F.; Wang, J. Functionalized Ultrasound-Propelled Magnetically Guided Nanomotors: Toward Practical Biomedical Applications. ACS Nano 2021, 7, 9232–9240. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Wang, W.; Bai, L.J.; Gentekos, D.T.; Hoyos, M.; Mallouk, T.E. Density and Shape Effects in the Acoustic Propulsion of Bimetallic Nanorod Motors. ACS Nano 2016, 10, 4763–4769. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.L.; Soto, F.; Gao, W.; Dong, R.F.; Garcia-Gradilla, V.; Magaña, E.; Zhang, X.J.; Wang, J. Reversible Swarming and Separation of Self-Propelled Chemically Powered Nanomotors under Acoustic Fields. J. Am. Chem. Soc. 2015, 137, 2163–2166. [Google Scholar] [CrossRef]
- Lu, X.L.; Wei, Y.; Ou, H.; Zhao, C.; Shi, L.K.; Liu, W.J. Universal Control for Micromotor Swarms with a Hybrid Sonoelectrode. Small 2021, 17, 2104516. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Wang, D.; Gao, C.; Sun, M.; Wu, Z.; He, Q. Reconfigurable Assembly of Active Liquid Metal Colloidal Cluster. Angew. Chem. 2020, 59, 19884–19888. [Google Scholar] [CrossRef]
- Gao, Q.; Yang, Z.; Zhu, R.T.; Wang, J.P.; Xu, P.Z.; Liu, J.Y.; Chen, X.W.; Yan, Z.Y.; Peng, Y.X.; Wang, Y.P.; et al. Ultrasonic Steering Wheels: Turning Micromotors by Localized Acoustic Microstreaming. ACS Nano 2023, 17, 4729–4739. [Google Scholar] [CrossRef] [PubMed]
- Athanassiadis, A.G.; Ma, Z.C.; Moreno-Gomez, N.; Melde, K.; Choi, E.; Goyal, R.; Fischer, P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem. Rev. 2022, 122, 5165–5208. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhao, L.L.; Wei, M.S.; Wang, W. Twists and Turns of Orbiting and Spinning Metallic Microparticles Powered by Megahertz Ultrasound. ACS Nano 2017, 11, 12668–12676. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Chen, J.; Liang, J.; Liu, Y.; Liu, C.; Liu, Y.; Xu, T.; Zhang, X. Ultrasound-enhanced catalytic hairpin assembly capable of ultrasensitive microRNA biosensing for the early screening of Alzheimer’s disease. Biosens. Bioelectron. 2023, 242, 115746. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Fan, C.; Song, Y.C.; Xu, T.L.; Zhang, X.J. Ultra-trace enriching biosensing in nanoliter sample. Biosens. Bioelectron. 2022, 210, 114297. [Google Scholar] [CrossRef]
- Luo, Y.; Zhou, M.Y.; Fan, C.; Song, Y.C.; Wang, L.R.; Xu, T.L.; Zhang, X.J. Active Enrichment of Nanoparticles for Ultra-Trace Point-of-Care COVID-19 Detection. Anal. Chem. 2023, 95, 5316–5322. [Google Scholar] [CrossRef]
- Louisnard, O. A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation. Ultrason. Sonochem. 2012, 19, 56–65. [Google Scholar] [CrossRef]
Motion Behaviors | Morphology | Reference |
---|---|---|
Chain assembly and axial rotation, directional motion, and in-plane rotation | Microrods | [25] |
Directional motion | Microrods | [27] |
Gathering and transfer | Nanorods | [28] |
Disperse and aggregate | Microrods | [29] |
Self-organize | Microrods | [30] |
Self-rotation around a fixed axis | Spheric Janus | [31] |
In-plane rotation and spinning | Microrods | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Chen, J.; Zhan, G.; Gu, S.; Cong, J.; Liu, M.; Liu, Y. Controlling the Collective Behaviors of Ultrasound-Driven Nanomotors via Frequency Regulation. Micromachines 2024, 15, 262. https://doi.org/10.3390/mi15020262
Zhao Z, Chen J, Zhan G, Gu S, Cong J, Liu M, Liu Y. Controlling the Collective Behaviors of Ultrasound-Driven Nanomotors via Frequency Regulation. Micromachines. 2024; 15(2):262. https://doi.org/10.3390/mi15020262
Chicago/Turabian StyleZhao, Zhihong, Jie Chen, Gaocheng Zhan, Shuhao Gu, Jiawei Cong, Min Liu, and Yiman Liu. 2024. "Controlling the Collective Behaviors of Ultrasound-Driven Nanomotors via Frequency Regulation" Micromachines 15, no. 2: 262. https://doi.org/10.3390/mi15020262
APA StyleZhao, Z., Chen, J., Zhan, G., Gu, S., Cong, J., Liu, M., & Liu, Y. (2024). Controlling the Collective Behaviors of Ultrasound-Driven Nanomotors via Frequency Regulation. Micromachines, 15(2), 262. https://doi.org/10.3390/mi15020262