The Superior Response and High Reproducibility of the Memristor-Integrated Low-Power Transparent SnO₂ Gas Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of SnO2 Gas Sensor with Memristor
2.2. Electrical and Gas Sensing Characterization of SnO2 Gas Sensor with Memristor
3. Results and Discussion
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mamun, M.A.A.; Yuce, M.R. Recent progress in nanomaterial enabled chemical sensors for wearable environmental monitoring applications. Adv. Funct. Mater. 2020, 30, 2005703. [Google Scholar] [CrossRef]
- Yang, L.; Zheng, G.; Cao, Y.; Meng, C.; Li, Y.; Ji, H.; Chen, X.; Niu, G.; Yan, J.; Xue, Y. Moisture-resistant, stretchable NOx gas sensors based on laser-induced graphene for environmental monitoring and breath analysis. Microsyst. Nanoeng. 2022, 8, 78. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Swetha, P.; Zhu, Y. Nanomaterial-enabled wearable sensors for healthcare. Adv. Healthc. Mater. 2018, 7, 1700889. [Google Scholar] [CrossRef] [PubMed]
- Pijnenburg, M.; De Jongste, J. Exhaled nitric oxide in childhood asthma: A review. Clin. Exp. Allergy 2008, 38, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Chae, M.; Lee, D.; Jung, J.; Kim, H.-D. Enhanced memristor-based gas sensor for fast detection using a porous carbon nanotube top electrode with membrane. Cell Rep. Phys. Sci. 2023, 4, 101659. [Google Scholar] [CrossRef]
- Walker, W.; Liew, A.; Harris, A.; Cole, J.; Lucas, J. Upper and lower airway nitric oxide levels in primary ciliary dyskinesia, cystic fibrosis and asthma. Respir. Med. 2013, 107, 380–386. [Google Scholar] [CrossRef]
- Lee, S.; Lee, M. Low-to-moderate atmospheric ozone levels are negatively correlated with hospital visits by asthma patients. Medicine 2022, 101, e31737. [Google Scholar] [CrossRef]
- Oh, E.; Choi, H.-Y.; Jung, S.-H.; Cho, S.; Kim, J.C.; Lee, K.-H.; Kang, S.-W.; Kim, J.; Yun, J.-Y.; Jeong, S.-H. High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation. Sens. Actuators B Chem. 2009, 141, 239–243. [Google Scholar] [CrossRef]
- Shendage, S.; Patil, V.; Vanalakar, S.; Patil, S.; Harale, N.; Bhosale, J.; Kim, J.; Patil, P. Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens. Actuators B Chem. 2017, 240, 426–433. [Google Scholar] [CrossRef]
- Sharma, B.; Sharma, A.; Myung, J.-h. Selective ppb-level NO2 gas sensor based on SnO2-boron nitride nanotubes. Sens. Actuators B Chem. 2021, 331, 129464. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, W.; Li, Y. Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: Recent developments. Sens. Actuators B Chem. 2022, 359, 131579. [Google Scholar] [CrossRef]
- Yeom, G.; Kwon, D.; Shin, W.; Park, M.-K.; Kim, J.-J.; Lee, J.-H. Fast-response/recovery In2O3 thin-film transistor-type NO2 gas sensor with floating-gate at low temperature. Sens. Actuators B Chem. 2023, 394, 134477. [Google Scholar] [CrossRef]
- Suehiro, J.; Zhou, G.; Imakiire, H.; Ding, W.; Hara, M. Controlled fabrication of carbon nanotube NO2 gas sensor using dielectrophoretic impedance measurement. Sens. Actuators B Chem. 2005, 108, 398–403. [Google Scholar] [CrossRef]
- Ding, Y.; Du, B.; Guo, X.; Dong, Y.; Zhang, M.; Jin, W.; Gao, C.; Peng, D.; He, Y. An ultrasensitive NO2 gas sensor based on a NiO-SnO2 composite with a sub-ppb detection limit at room temperature. Sens. Actuators B Chem. 2024, 414, 135916. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, K.H. Improvement of long-term stability in SnO2-based gas sensor for monitoring offensive odor. Sens. Actuators B Chem. 1999, 56, 50–58. [Google Scholar] [CrossRef]
- Mei, L.; Chen, Y.; Ma, J. Gas sensing of SnO2 nanocrystals revisited: Developing ultra-sensitive sensors for detecting the H2S leakage of biogas. Sci. Rep. 2014, 4, 6028. [Google Scholar] [CrossRef]
- Khuspe, G.; Sakhare, R.; Navale, S.T.; Chougule, M.A.; Kolekar, Y.D.; Mulik, R.N.; Pawar, R.C.; Lee, C.; Patil, V.B. Nanostructured SnO2 thin films for NO2 gas sensing applications. Ceram. Int. 2013, 39, 8673–8679. [Google Scholar] [CrossRef]
- Waqas Alam, M.; Khatoon, U.; Qurashi, A. Synthesis and characterization of Cu-SnO2 nanoparticles deposited on glass using ultrasonic spray pyrolysis and their H2S sensing properties. Curr. Nanosci. 2012, 8, 919–924. [Google Scholar] [CrossRef]
- Xu, Y.-D.; Jiang, Y.-P.; Tang, X.-G.; Liu, Q.-X.; Tang, Z.; Li, W.-H.; Guo, X.-B.; Zhou, Y.-C. Enhancement of Resistive Switching Performance in Hafnium Oxide (HfO2) Devices via Sol-Gel Method Stacking Tri-Layer HfO2/Al-ZnO/HfO2 Structures. Nanomaterials 2022, 13, 39. [Google Scholar] [CrossRef]
- Chae, M.; Lee, D.; Kim, H.D. Dynamic Response and Swift Recovery of Filament Heater-Integrated Low-Power Transparent CNT Gas Sensor. Adv. Funct. Mater. 2024, 2405260. [Google Scholar] [CrossRef]
- Bi, Y.G.; Liu, Y.F.; Zhang, X.L.; Yin, D.; Wang, W.Q.; Feng, J.; Sun, H.B. Ultrathin metal films as the transparent electrode in ITO-free organic optoelectronic devices. Adv. Opt. Mater. 2019, 7, 1800778. [Google Scholar] [CrossRef]
- Shah, D.K.; KC, D.; Umar, A.; Algadi, H.; Akhtar, M.S.; Yang, O.-B. Influence of efficient thickness of antireflection coating layer of HfO2 for crystalline silicon solar cell. Inorganics 2022, 10, 171. [Google Scholar] [CrossRef]
- Lee, J.; Yang, K.; Kwon, J.Y.; Kim, J.E.; Han, D.I.; Lee, D.H.; Yoon, J.H.; Park, M.H. Role of oxygen vacancies in ferroelectric or resistive switching hafnium oxide. Nano Converg. 2023, 10, 55. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, S.-H.; Jo, I.H.; Park, T.J.; Kim, J.H. Reduced leakage current in atomic-layer-deposited HfO2 thin films deposited at low temperature by in-situ defect passivation. Appl. Surf. Sci. 2024, 645, 158790. [Google Scholar] [CrossRef]
- Baik, M.; Kang, H.-K.; Kang, Y.-S.; Jeong, K.-S.; An, Y.; Choi, S.; Kim, H.; Song, J.-D.; Cho, M.-H. Electrical properties and thermal stability in stack structure of HfO2/Al2O3/InSb by atomic layer deposition. Sci. Rep. 2017, 7, 11337. [Google Scholar] [CrossRef]
- Ahmad, I.; Lee, D.; Chae, M.; Kim, H.-D. Advanced recovery and enhanced humidity tolerance of CNTs gas sensor using a filament heater. Chem. Eng. J. 2024, 496, 154014. [Google Scholar] [CrossRef]
- Xing, L.-L.; He, B.; Chen, Z.-H.; Xue, X.-Y. Schottky barrier and catalytic effect induced high gas sensing of one-step synthesized Pd–SnO2 nanorods. Solid State Sci. 2013, 15, 42–46. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, S.; Xia, Y.; Yu, P.; Xu, Y.; Dong, Y.; Wei, Q.; Wang, J. High-performance room-temperature NO2 gas sensor based on Au-loaded SnO2 nanowires under UV light activation. Nanomaterials 2022, 12, 4062. [Google Scholar] [CrossRef]
- Batzill, M. Surface science studies of gas sensing materials: SnO2. sensors 2006, 6, 1345–1366. [Google Scholar] [CrossRef]
- Leghrib, R.; Felten, A.; Pireaux, J.; Llobet, E. Gas sensors based on doped-CNT/SnO2 composites for NO2 detection at room temperature. Thin Solid Film. 2011, 520, 966–970. [Google Scholar] [CrossRef]
- Xu, T.; Liu, Y.; Jiang, Z.; Pei, Y.; Zhang, S.; Xu, J.; Zhang, X.; Li, X. Enhancing the NO sensing properties of the SnO2 nanowires sensors by Ar–O2 plasma modification. J. Mater. Sci. Mater. Electron. 2018, 29, 13897–13902. [Google Scholar] [CrossRef]
HfO2 Thickness (nm) | Forming Voltage (V) | Reset Voltage (V) | Set Voltage (V) | Response at 10 ppm (%) |
---|---|---|---|---|
0 | - | - | - | 12.96 |
20 | 6.1 | −1.74 | 1.71 | 18.17 |
30 | 7.1 | −1.08 | 0.96 | 33.39 |
40 | 8.2 | −3.2 | 2.12 | 28.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Kim, H.-D. The Superior Response and High Reproducibility of the Memristor-Integrated Low-Power Transparent SnO₂ Gas Sensor. Micromachines 2024, 15, 1411. https://doi.org/10.3390/mi15121411
Kim T, Kim H-D. The Superior Response and High Reproducibility of the Memristor-Integrated Low-Power Transparent SnO₂ Gas Sensor. Micromachines. 2024; 15(12):1411. https://doi.org/10.3390/mi15121411
Chicago/Turabian StyleKim, Taegi, and Hee-Dong Kim. 2024. "The Superior Response and High Reproducibility of the Memristor-Integrated Low-Power Transparent SnO₂ Gas Sensor" Micromachines 15, no. 12: 1411. https://doi.org/10.3390/mi15121411
APA StyleKim, T., & Kim, H. -D. (2024). The Superior Response and High Reproducibility of the Memristor-Integrated Low-Power Transparent SnO₂ Gas Sensor. Micromachines, 15(12), 1411. https://doi.org/10.3390/mi15121411