Thermal Cycling Behavior of Aged FeNiCoAlTiNb Cold-Rolled Shape Memory Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. EBSD and ODF Results
3.2. Hardness Result
3.3. XRD Results
3.4. TEM Results at Room Temperature
3.5. Magnetization Results of FeNiCoAlTiNb Aged Sample
3.6. Thermal Cyclic Results
4. Conclusions
- (1)
- The EBSD results reveal that the texture intensity and grain size increased as the annealing time increased from 0.5 to 1 h. After annealing at 1277 °C for 1 h, FeNiCoAlTiNb 98.5%CR showed a strong texture intensity in the <100> orientation, the value of which was 16.4 mud, and the average grain size was 400 μm. The volume fraction of LABs was 15.7%. The ODF results show the Goss texture and brass texture of the 98.5%CR sample after annealing;
- (2)
- The hardness results show that the hardness value increased when the aging time increased from 24 to 48 h. After 48 h, the hardness value decreased. This result indicates that the aging condition employed here (600 °C, 48 h) is optimal;
- (3)
- The TEM results indicate that the precipitate size in aged samples was around 10 nm. The crystal structure of precipitates was L12. The XRD results reveal that the (111) and (200) plane peaks had an austenite (γ, FCC) structure in the annealing sample. After aging, the original (111) and (200) plane peaks decreased, and the (111) plane of the new peak increased, indicating precipitate (γ’, L12);
- (4)
- Based on the magnetic results, the magnetization of the aged samples increased with increases in the magnetic field. When the magnetic field approached 5 T, the magnetization almost reached its saturation value. The maximum magnetization was around 140 emu/g. As the magnetic field levels increased from 0.05 to 7 T, the transformation temperatures increased. This property (magnetic induction of the martensitic transformation) can be used for designing actuators where the elements of microrobot elongate and contract in response to changes in the magnetic fields.
- (5)
- The thermal cyclic behavior of the aged sample showed a recoverable strain of 2% at the 400 MPa stress level during the three-point bending test. The observed recoverable strain values were lower than the theoretical values, possibly owing to the generation of grain boundary precipitates affecting the fracture mode and ductility of the aged sample, and this limits the sample’s ability to achieve a higher recoverable strain.
- (6)
- The new FeNiCoAlTiNb SMAs have great potential applications in microdevices, such as actuation (actuator of micropump, gripper, and robot), temperature sensing (gas and humidity sensor), and thermal energy harvesting (generators).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, M.S.; Heo, J.K.; Rodrigue, H.; Lee, H.T.; Pané, S.; Han, M.W.; Ahn, S.H. Shape memory alloy (SMA) actuators: The role of material, form, and scaling effects. Adv. Mater. 2023, 35, 2208517. [Google Scholar] [CrossRef] [PubMed]
- Costanza, G.; Tata, M.E. Shape memory alloys for aerospace, recent developments, and new applications: A short review. Materials 2020, 13, 1856. [Google Scholar] [CrossRef] [PubMed]
- Ghanbarzadeh-Dagheyan, A.; Jalili, N.; Ahmadian, M.T. A holistic survey on mechatronic Systems in Micro/Nano scale with challenges and applications. J. Micro-Bio Robot. 2021, 17, 1–22. [Google Scholar] [CrossRef]
- Hassani, F.A.; Shi, Q.; Wen, F.; He, T.; Haroun, A.; Yang, Y.; Feng, Y.; Lee, C. Smart materials for smart healthcare–moving from sensors and actuators to self-sustained nanoenergy nanosystems. Smart Mater. Med. 2020, 1, 92–124. [Google Scholar] [CrossRef]
- Tanaka, Y.; Himuro, Y.; Kainuma, R.; Sutou, Y.; Omori, T.; Ishida, K. Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 2010, 27, 1488–1490. [Google Scholar] [CrossRef]
- Omori, T.; Abe, S.; Tanaka, Y.; Lee, D.; Ishida, K.; Kainuma, R. Thermoelastic martensitic transformation and superelasticity in Fe–Ni–Co–Al–Nb–B polycrystalline alloy. Scr. Mater. 2013, 69, 812–815. [Google Scholar] [CrossRef]
- Lee, D.; Omori, T.; Kainuma, K. Ductility enhancement and superelasticity in Fe–Ni–Co–Al–Ti–B polycrystalline alloy. J. Alloys Compd. 2014, 617, 120–123. [Google Scholar] [CrossRef]
- Geng, Y.; Lee, D.; Xu, X.; Nagasako, M.; Jin, X.; Omori, T.; Kainuma, R. Coherency of ordered γ’ precipitates and thermoelas-tic martensitic transformation in FeNiCoAlTaB alloys. J. Alloys Compd. 2015, 628, 287–292. [Google Scholar] [CrossRef]
- Fu, H.; Li, W.; Song, S.; Jiang, Y.; Xie, J. Effects of grain orientation and precipitates on the superelasticity in directionally solidified FeNiCoAlTaB shape memory alloy. J. Alloys Compd. 2016, 684, 556–563. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, C.; Shin, S.; Casalena, L.; Vecchio, K. Multifunctional non-equiatomic high entropy alloys with superelastic, high damping, and excellent cryogenic properties. Adv. Eng. Mater. 2019, 21, 1800941. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, C.; Shin, S.; Casalena, L.; Vecchio, K. Grain boundary precipitation of tantalum and NiAl in superelastic FeNiCoAlTaB alloy. Mater. Sci. Eng. A 2019, 743, 372–381. [Google Scholar] [CrossRef]
- Czerny, M.; Maziarz, W.; Cios, G.; Wojcik, A.; Chumlyakov, Y.I.; Schell, N.; Fitta, M.; Chulist, R. The effect of heat treatment on the precipitation hardening in FeNiCoAlTa single crystals. Mater. Sci. Eng. A 2020, 784, 139327. [Google Scholar] [CrossRef]
- Wójcik, A.; Chulist, R.; Szewczyk, A.; Dutkiewicz, J.; Maziarz, W. The influence of γ′ precipitates on the structural stability of FeNiCoAlTa and FeNiCoAlTaB single crystals after cyclic superelastic deformation. Arch. Metall. Mater. 2023, 68, 1157–1164. [Google Scholar] [CrossRef]
- Choi, W.S.; Pang, E.L.; Choi, P.P.; Schuh, C.A. FeNiCoAlTaB superelastic and shape-memory wires with oligocrystalline grain structure. Scr. Mater. 2020, 188, 1–5. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, Q.; Tang, Y.T.; Xu, M.; Wang, H.; Zhu, C.; Ell, J.; Zhao, S.; MacDonald, B.E.; Cao, P.; et al. Strong and ductile FeNiCoAl-based high-entropy alloys for cryogenic to elevated temperature multifunctional applications. Acta Mater. 2023, 242, 118449. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, C.; Shin, S.; Vecchio, K. Enhancement of <001> recrystallization texture in non-equiatomic Fe-Ni-Co-Al-based high entropy alloys by combination of annealing and Cr addition. J. Alloys Compd. 2018, 768, 277–286. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Xu, M.; MacDonald, B.E.; Hong, R.; Zhu, C.; Dai, X.; Vecchio, K.S.; Apelian, D.; Hahn, H.; et al. Orientation-dependent superelasticity of a metastable high-entropy alloy. Appl. Phys. Lett. 2021, 119, 16. [Google Scholar] [CrossRef]
- Ma, J.; Kockar, B.; Evirgen, A.; Karaman, I.; Luo, Z.; Chumlyakov, Y. Shape memory behavior and tension–compression asymmetry of a FeNiCoAlTa single-crystalline shape memory alloy. Acta Mater. 2012, 60, 2186–2195. [Google Scholar] [CrossRef]
- Ma, J.; Hornbuckle, B.; Karaman, I.; Thompson, G.B.; Luo, Z.; Chumlyakov, Y. The effect of nanoprecipitates on the superelastic properties of FeNiCoAlTa shape memory alloy single crystals. Acta Mater. 2013, 61, 3445–3455. [Google Scholar] [CrossRef]
- Krooß, P.; Somsen, C.; Niendorf, T.; Schaper, M.; Karaman, I.; Chumlyakov, Y.; Eggeler, G.; Maier, H.J. Cyclic degradation mechanisms in aged FeNiCoAlTa shape memory single crystals. Acta Mater. 2014, 79, 126. [Google Scholar] [CrossRef]
- Chumlyakov, Y.I.; Kireeva, I.V.; Kutz, O.A.; Turabi, A.S.; Karaca, H.E.; Karaman, I. Unusual reversible twinning modes and giant superelastic strains in FeNiCoAlNb single crystals. Scr. Mater. 2016, 119, 43–46. [Google Scholar] [CrossRef]
- Czerny, M.; Cios, G.; Maziarz, W.; Chumlyakov, Y.; Chulist, R. Studies on the two-step aging process of Fe-based shape memory single crystals. Materials 2020, 13, 1724. [Google Scholar] [CrossRef] [PubMed]
- Chumlyakov, Y.I.; Kireeva, I.V.; Pobedennaya, P.; Krooβ, P.; Niendorf, T. Rubber-like behaviour and superelasticity of [001]-oriented FeNiCoAlNb single crystals containing γ- and β-phase particles. J. Alloys Compd. 2021, 856, 158158. [Google Scholar] [CrossRef]
- Chumlyakov, Y.I.; Kireeva, I.V.; Kuksgauzen, D.A.; Niendorf, T.; Krooβ, P. Tension-compression asymmetry of the supere-lastic behavior of high-strength [001]-oriented FeNiCoAlNb crystals. Mater. Lett. 2021, 289, 129395. [Google Scholar] [CrossRef]
- Chumlyakov, Y.I.; Kireeva, I.V.; Pobedennaya, Z.V.; Krooβ, P.; Niendorf, T. Shape memory effect and superelasticity of [001]-oriented FeNiCoAlNb single crystals aged under and without stress. Metals 2021, 11, 943. [Google Scholar] [CrossRef]
- Tseng, L.W.; Ma, J.; Karaman, I.; Wang, S.J.; Chumlyakov, Y. Superelastic response of the FeNiCoAlTi single crystals under tension and compression. Scr. Mater. 2015, 101, 1–4. [Google Scholar] [CrossRef]
- Tseng, L.W.; Chen, C.H.; Tzeng, Y.C.; Lee, P.Y.; Lu, N.H.; Chumlyakov, Y. Microstructure and superelastic properties of FeNi-CoAlTi Single crystals with the <100> orientation under tension. Crystals 2022, 15, 548. [Google Scholar] [CrossRef]
- Cassinerio, J.; Giordana, M.F.; Zelaya, E.; Remich, V.; Krooß, P.; Freudenberger, J.; Niendorf, T.; Sobrero, C.E. On the Impact of γ′ Precipitates on the Transformation Temperatures in Fe–Ni–Co–Al–Ti–B Shape Memory Alloy Wires. Shape Mem. Superelasticity 2024, 10, 37. [Google Scholar] [CrossRef]
- Sobrero, C.E.; Lauhoff, C.; Wegener, T.; Niendorf, T.; Krooß, P. On the impact of texture and grain size on the pseudoelastic properties of polycrystalline Fe–Ni–Co–Al–Ti alloy. Shape Mem. Superelasticity 2020, 6, 191. [Google Scholar] [CrossRef]
- Lee, D.; Omori, T.; Kainuma, R. Microstructure and mechanical properties in B-doped Fe-31.9Ni-9.6Co-4.7Ti alloys. Shape Mem. Superelasticity 2016, 2, 228. [Google Scholar] [CrossRef]
- Fu, H.; Zhao, H.; Song, S.; Zhang, Z.; Xie, J. Evolution of the cold-rolling and recrystallization textures in FeNiCoAlNbB shape memory alloy. J. Alloys Compd. 2016, 686, 1008. [Google Scholar] [CrossRef]
- Czerny, M.; Cios, G.; Maziarz, W.; Chumlyakov, Y.I.; Schell, N.; Chulist, R. Effect of B addition on the superelasticity in FeNiCoAlTa single crystals. Mater. Des. 2021, 197, 109225. [Google Scholar] [CrossRef]
- Zhou, Z.; Cui, J.; Ren, X. Phase diagram of FeNiCoAlTaB ferrous shape memory alloy on aging time. AIP Adv. 2017, 7, 045019. [Google Scholar] [CrossRef]
Magnetic Field | Transformation Temperature (°C) | Temperature Hysteresis (°C) |
---|---|---|
0.05 T | Af = −40 and Ms = −77 | 37 |
1 T | Af = −30 and Ms = −68 | 38 |
3 T | Af = −26 and Ms = −65 | 39 |
5 T | Af = −18 and Ms = −57 | 39 |
7T | Af = −10 and Ms = −49 | 39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseng, L.-W.; Chen, W.-C. Thermal Cycling Behavior of Aged FeNiCoAlTiNb Cold-Rolled Shape Memory Alloys. Micromachines 2024, 15, 1338. https://doi.org/10.3390/mi15111338
Tseng L-W, Chen W-C. Thermal Cycling Behavior of Aged FeNiCoAlTiNb Cold-Rolled Shape Memory Alloys. Micromachines. 2024; 15(11):1338. https://doi.org/10.3390/mi15111338
Chicago/Turabian StyleTseng, Li-Wei, and Wei-Cheng Chen. 2024. "Thermal Cycling Behavior of Aged FeNiCoAlTiNb Cold-Rolled Shape Memory Alloys" Micromachines 15, no. 11: 1338. https://doi.org/10.3390/mi15111338
APA StyleTseng, L.-W., & Chen, W.-C. (2024). Thermal Cycling Behavior of Aged FeNiCoAlTiNb Cold-Rolled Shape Memory Alloys. Micromachines, 15(11), 1338. https://doi.org/10.3390/mi15111338