Large Range Curvature Measurement Using FBGs in Two-Core Fiber with Protective Coating
Abstract
:1. Introduction
2. Curvature Sensor: Basic Structure and Fabrication
2.1. Specific Parameters of Two-Core Fiber
2.2. FBG Design and Fabrication
2.3. Design and Fabrication of Curvature Sensor
3. Verification of Sensor Performance
3.1. Curvature Measurements
3.2. Temperature and Humidity
3.3. Discussion
Sensor Structures | Holey Fiber | ) | ) | Ref. |
---|---|---|---|---|
FBGs in multicore fiber | No | 128 | 0–1.896 | [29] |
FBGs in two-core Rectangular fiber | No | 128 | 1.2–3 | [30] |
FBGs in two-core fiber | Yes | 33 | 0–4.759 | [22] |
FBGs (central core and eccentric core) | Yes | 58 | 0–50 | This work |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rovera, A.; Tancau, A.; Boetti, N.; Dalla Vedova, M.D.L.; Maggiore, P.; Janner, D. Fiber Optic Sensors for Harsh and High Radiation Environments in Aerospace Applications. Sensors 2023, 23, 2512. [Google Scholar] [CrossRef] [PubMed]
- Lo Presti, D.; Santucci, F.; Massaroni, C.; Formica, D.; Setola, R.; Schena, E. A multi-point heart rate monitoring using a soft wearable system based on fiber optic technology. Sci. Rep. 2021, 11, 21162. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Liu, Q.; Naqawe, H.S.; Fok, M.P. Movement Detection in Soft Robotic Gripper using Sinusoidally Embedded Fiber Optic Sensor. Sensors 2020, 20, 1312. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Wang, G.; Yu, F.; Liu, S.; Xu, W.; Shao, L.; Wang, C.; Fu, H.; Fu, S.; Shum, P.P.; et al. Optical curvature sensor with high resolution based on in-line fiber Mach-Zehnder interferometer and microwave photonic filter. Opt. Express 2022, 30, 5402–5413. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Zhao, Q.; Li, L.; Wang, Y.; Yu, C. Simultaneous measurement of temperature and curvature using ring-core fiber-based Mach-Zehnder interferometer. Opt. Express 2021, 29, 17915–17925. [Google Scholar] [CrossRef]
- Yang, X.; Luo, B.; Wu, D.; Fan, J.; Gu, H.; Guo, Y.; Zhao, M. Highly sensitive curvature sensor based on a sandwich multimode fiber Mach-Zehnder interferometer. Opt. Express 2022, 30, 40251–40264. [Google Scholar] [CrossRef]
- Cui, W.; Zhou, Y.F.; Yan, Z.H.; Guo, J.Q.; Yue, Y.T.; Chen, H. Simulation and experimental verification of off-axis fiber Bragg grating bending sensor with high refractive index modulation. Optoelectron. Lett. 2022, 18, 200–203. [Google Scholar] [CrossRef]
- Feng, D.; Qiao, X.; Albert, J. Off-axis ultraviolet-written fiber Bragg gratings for directional bending measurements. Opt. Lett. 2016, 41, 1201–1204. [Google Scholar] [CrossRef]
- Zhang, L.S.; Qiao, X.G.; Liu, Q.P.; Shao, M.; Jiang, Y.H.; Huang, D. Off-axis ultraviolet-written thin-core fiber Bragg grating for directional bending measurements. Opt. Commun. 2018, 410, 197–201. [Google Scholar] [CrossRef]
- Kisala, P.; Harasim, D.; Mroczka, J. Temperature-insensitive simultaneous rotation and displacement (bending) sensor based on tilted fiber Bragg grating. Opt. Express 2016, 24, 29922–29929. [Google Scholar] [CrossRef]
- Kisala, P. Physical foundations determinings spectral characteristics measured in Bragg gratings subjected to bending. Metrol. Meas. Syst. 2022, 29, 573–584. [Google Scholar] [CrossRef]
- Cieszczyk, S.; Harasim, D.; Ormanbekova, A.; Skorupski, K.; Wawrzyk, M. Methods of Projecting Mode Amplitude Changes on the Wavelength Axis in Order to Determine the Bending Radius on the Basis of TFBG Grating Spectra. Sensors 2021, 21, 7526. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Kim, D.K.; Kim, J.; Lee, S.L.; Choi, S.; Han, J.; Lee, Y.W. Strain-Insensitive Simultaneous Measurement of Bending and Temperature Using Long-Period Fiber Grating Inscribed on Double-Clad Fiber with CO2 Laser. J. Nanosci. Nanotechnol. 2021, 21, 1883–1889. [Google Scholar] [CrossRef]
- Zhang, S.; Geng, T.; Niu, H.; Li, X.; Yan, Y.; Sun, C.; Deng, S.; Wang, Z.; Wang, S.; Yang, W.; et al. All fiber compact bending sensor with high sensitivity based on a multimode fiber embedded chirped long-period grating. Opt. Lett. 2020, 45, 4172–4175. [Google Scholar] [CrossRef]
- Jeong, S.J.; Kim, J.; Choi, S.; Lee, S.L.; Kim, M.S.; Kim, D.K.; Lee, Y.W. Simultaneous Measurement of Bending and Temperature Using Long-Period Fiber Grating Inscribed on Polarization-Maintaining Fiber with CO2 Laser. J. Nanosci. Nanotechnol. 2020, 20, 285–292. [Google Scholar] [CrossRef]
- Hu, X.; Chen, X.; Liu, C.; Mégret, P.; Caucheteur, C. D-shaped Polymer Optical Fiber Bragg Grating for Bend Sensing. In Proceedings of the Advanced Photonics 2015, Boston, MA, USA, 27 June–1 July 2015; p. SeS2B.5. [Google Scholar]
- Hou, M.; Yang, K.; He, J.; Xu, X.; Ju, S.; Guo, K.; Wang, Y. Two-dimensional vector bending sensor based on seven-core fiber Bragg gratings. Opt. Express 2018, 26, 23770–23781. [Google Scholar] [CrossRef]
- Yong, Z.; Zhan, C.; Lee, J.; Yin, S.; Ruffin, P. Multiple parameter vector bending and high-temperature sensors based on asymmetric multimode fiber Bragg gratings inscribed by an infrared femtosecond laser. Opt. Lett. 2006, 31, 1794–1796. [Google Scholar] [CrossRef]
- Jewart, C.M.; Wang, Q.; Canning, J.; Grobnic, D.; Mihailov, S.J.; Chen, K.P. Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing. Opt. Lett. 2010, 35, 1443–1445. [Google Scholar] [CrossRef]
- Gao, R.; Jiang, Y.; Zhao, Y. Magnetic field sensor based on anti-resonant reflecting guidance in the magnetic gel-coated hollow core fiber. Opt. Lett. 2014, 39, 6293–6296. [Google Scholar] [CrossRef]
- Yuan, T.; Zhong, X.; Guan, C.; Fu, J.; Yang, J.; Shi, J.; Yuan, L. Long period fiber grating in two-core hollow eccentric fiber. Opt. Express 2015, 23, 33378–33385. [Google Scholar] [CrossRef]
- Mao, G.; Yuan, T.; Guan, C.; Yang, J.; Chen, L.; Zhu, Z.; Shi, J.; Yuan, L. Fiber Bragg grating sensors in hollow single- and two-core eccentric fibers. Opt. Express 2017, 25, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Zhao, C.; Hu, X.; Chen, H.; Yu, Q.; Lian, Z.; Qu, H. Glycerol–Water Solution-Assisted Mach–Zehnder Temperature Sensor in Specialty Fiber with Two Cores and One Channel. Photonics 2021, 8, 103. [Google Scholar] [CrossRef]
- Zhao, C.; Qiu, H.; Chen, H.; Hu, X.; Yu, Q.; Lian, Z.; Li, J.; Qu, H. In-fiber Mach-Zehnder temperature sensor using silicone-oil-filled dual core fiber. Sens. Actuators A Phys. 2021, 323, 112644. [Google Scholar] [CrossRef]
- Zhao, Y.; Cai, L.; Li, X.G. Temperature-Insensitive Optical Fiber Curvature Sensor Based on SMF-MMF-TCSMF-MMF-SMF Structure. IEEE Trans. Instrum. Meas. 2017, 66, 141–147. [Google Scholar] [CrossRef]
- Qin, Z.; Qu, S.; Wang, Z.; Yang, W.; Li, S.; Liu, Z.; Xu, Y. A fully distributed fiber optic sensor for simultaneous relative humidity and temperature measurement with polyimide-coated polarization maintaining fiber. Sens. Actuators B Chem. 2022, 373, 132699. [Google Scholar] [CrossRef]
- Qu, H.; Brastaviceanu, T.; Bergeron, F.; Olesik, J.; Pavlov, I.; Ishigure, T.; Skorobogatiy, M. Photonic bandgap Bragg fiber sensors for bending/displacement detection. Appl. Opt. 2013, 52, 6344–6349. [Google Scholar] [CrossRef]
- Liang, D.; Du, C.; Ma, F.; Shen, Y.; Wu, K.; Zhou, J. Degradation of Polyacrylate in the Outdoor Agricultural Soil Measured by FTIR-PAS and LIBS. Polymers 2018, 10, 1296. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Z.; Shum, P.P.; Wang, R.; Dinh, X.Q.; Fu, S.; Tong, W.; Tang, M. Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing. J. Opt. 2016, 18, 085–705. [Google Scholar] [CrossRef]
- Htein, L.; Gunawardena, D.S.; Leong, C.Y.; Tam, H.Y. Bragg Gratings in Two-Core Rectangular Fiber for Discrimination of Curvature, Strain, and Temperature Measurements. IEEE Trans. Instrum. Meas. 2021, 70, 1–7. [Google Scholar] [CrossRef]
Eccentric Core FBG | Central Core FBG | |||
---|---|---|---|---|
Orientation | ) | ) | ||
−58 | 98.6 | 6.42 | 99.2 | |
1.12 | 85.3 | 2.51 | 96.9 | |
57.47 | 99.4 | −7.71 | 98.2 | |
1.68 | 83.2 | 4.48 | 98.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.; Li, L.; Yu, Q.; Luo, Z.; Lian, Z.; Teng, C.; Qu, H.; Hu, X. Large Range Curvature Measurement Using FBGs in Two-Core Fiber with Protective Coating. Micromachines 2024, 15, 1310. https://doi.org/10.3390/mi15111310
Chen R, Li L, Yu Q, Luo Z, Lian Z, Teng C, Qu H, Hu X. Large Range Curvature Measurement Using FBGs in Two-Core Fiber with Protective Coating. Micromachines. 2024; 15(11):1310. https://doi.org/10.3390/mi15111310
Chicago/Turabian StyleChen, Ruibin, Lutian Li, Qianqing Yu, Zhijun Luo, Zhenggang Lian, Chuanxin Teng, Hang Qu, and Xuehao Hu. 2024. "Large Range Curvature Measurement Using FBGs in Two-Core Fiber with Protective Coating" Micromachines 15, no. 11: 1310. https://doi.org/10.3390/mi15111310
APA StyleChen, R., Li, L., Yu, Q., Luo, Z., Lian, Z., Teng, C., Qu, H., & Hu, X. (2024). Large Range Curvature Measurement Using FBGs in Two-Core Fiber with Protective Coating. Micromachines, 15(11), 1310. https://doi.org/10.3390/mi15111310