Research on Multiphysics-Driven MEMS Safety and Arming Devices
Abstract
:1. Introduction
2. Modeling
2.1. Structure of the S&A Device
2.2. Structure of the Detonation Device
3. Simulation
3.1. Simulation of the Setback Mechanism
3.2. Simulation of the Spin Mechanism
3.3. Simulation of the Electrothermal Mechanism
4. Fabrication
5. Testing
5.1. Unlock Test of Setback Mechanism
5.2. Unlock Test of Electrothermal Mechanism and Spin Mechanism
5.3. Test of the Safe and Arming Functions
5.4. Overload Resistance Test
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Hu, T. Research status and development trend of MEMS S&A devices: A review. Defin. Technol. 2021, 17, 450–456. [Google Scholar]
- Kan, W.; Chu, E.; Liu, W.; Ren, W.; Ren, X. A Review on MEMS Safety and Arming Devices for Micro-initiation System. Chin. J. Energetic Mater. 2022, 30, 78–94. [Google Scholar]
- Xi, Z.; Nie, W.; Cao, Y. An Overview on the Development of MEMS S&A Device. J. Detect. Control 2021, 43, 1–14. [Google Scholar]
- Rehan, M.; Mansoor, M. Application of MEMS in safety and arming devices: An overview. Microsyst. Technol. 2021, 27, 3599–3610. [Google Scholar] [CrossRef]
- Qin, Y.; Shen, Y.; Zou, X.; Hao, Y. Test and improvement of a fuze MEMS setback arming device based on the EDM Process. Micromachines 2022, 13, 292. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Eom, J.; Lee, S.; Lim, D.; Jang, Y.; Seo, K.; Choi, S.; Lee, C.; Oh, J. Miniature mechanical safety and arming device with runaway escapement arming delay mechanism for artillery fuze. Sens. Actuators A 2018, 279, 518–524. [Google Scholar] [CrossRef]
- Seok, J.; Jeong, J.; Eom, J.; Lee, S.; Lee, C.; Ryu, S.; Oh, J. Ball driven type MEMS SAD for artillery fuse. J. Micromech. Microeng. 2018, 27, 015032. [Google Scholar] [CrossRef]
- Lei, S.; Cao, Y.; Nie, W.; Xi, Z.; Yao, J.; Zhu, H.; Lu, H. Research on Mechanical Responses of a Novel Inertially Driven MEMS Safety and Arming Device Under Dual-Environment Inertial Loads. IEEE Sens. J. 2022, 22, 7645–7655. [Google Scholar] [CrossRef]
- Xi, Z.; Nie, W.; Li, Q. A MEMS interrupter mechanism for fuze safety & arming device. In Proceedings of the International Conference on Mechanical Engineering & Mechanics, Beijing, China, 21–23 October 2009. [Google Scholar]
- Wang, K.X.; Hu, T.J.; Zhao, Y.L.; Ren, W.; Wang, Y.F. Design of an Intelligent MEMS Safety and Arming Device with a Condition Feedback Function. Micromachines 2023, 14, 1130. [Google Scholar] [CrossRef] [PubMed]
- Pezous, H.; Rossi, C.; Sanchez, M.; Mathieu, F.; Dollat, X.; Charlot, S.; Salvagnac, L.; Conedera, V. Integration of a MEMS based safe arm and fire device. Sens. Actuators A 2010, 159, 157–167. [Google Scholar] [CrossRef]
- Zhu, P.; Hou, G.; Wang, H.Y.; Xu, C.; Zhao, S.; Shen, R. Design, Preparation, and Performance of a Planar Ignitor Inserted with PyroMEMS Safe and Arm Device. J. Microelectromech. Syst. 2018, 27, 1186–1192. [Google Scholar] [CrossRef]
- Robert, R. MEMS based fuze technology. In Proceedings of the 58th Annual Fuze Conference, Baltimore, MD, USA, 7–9 July 2015. [Google Scholar]
- Lv, S.N.; Feng, H.Z.; Lou, W.Z.; Xiao, C.; Kan, W.X.; Su, W.T.; Wang, J.K.; Ji, T.A.; IOP Publishing Ltd. Design and process of force-electric fusion for electromagnetic driven Si based MEMS S&A. In Proceedings of the 25th Annual Conference and 14th International Conference of the Chinese-Society-of-Micro-Nano-Technology (CSMNT), Chinese Society of Micro-Nano Technology, Shenzhen, China, 20–23 October 2023. [Google Scholar]
- Lv, S.N.; Feng, H.Z.; Lou, W.Z.; Xiao, C.; Su, W.T.; Kan, W.X.; He, B. Research on the Application of Microcast Electromagnetic Coil in an Si MEMS Bistable Recoverable Safety and Arming Device. Micromachines 2023, 14, 1346. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-L.; Hu, T.-J.; Li, X.-Y.; Jiang, Z.-D.; Ren, W.; Bai, Y.-W. Design and Characterization of a Large Displacement Electro-thermal Actuator for a New Kind of Safety-and-Arming Device. Energy Harvest. Syst. 2015, 2, 143–148. [Google Scholar] [CrossRef]
- Xu, C.; Zhu, P.; Wang, K.; Qin, X.; Zhang, Q.; Yang, Z.; Shen, R.Q. An electro-explosively actuated mini-flyer launcher. Sens. Actuators A-Phys. 2019, 292, 17–23. [Google Scholar] [CrossRef]
- Liu, W.; Chu, E.; Liu, L.; Ren, X.; Xie, R.; Ren, W.; Li, J. Review on Micro Fire-train based on Flyer Impact Initiation. Chin. J. Energetic Mater. 2023, 31, 606–634. [Google Scholar]
- Wang, K.X.; Hu, T.J.; Zhao, Y.L.; Ren, W.; Liu, J.K. Design of a Double-Layer Electrothermal MEMS Safety and Arming Device with a Bistable Mechanism. Micromachines 2022, 13, 1076. [Google Scholar] [CrossRef] [PubMed]
Length l | Width w | Thickness h | Diameter d | Minimum Unlock Displacement wmax |
---|---|---|---|---|
4000 μm | 450 μm | 100 μm | 400 μm | 200 μm |
Width b | Thickness h | Length l | Segments n | Radius R | Designed Stiffness K1 | Theoretical Stiffness K2 |
---|---|---|---|---|---|---|
40 μm | 50 μm | 600 μm | 4 | 100 μm | 21.7 N/m | 19.9 N/m |
Width w | Thickness h | Length l | Number of Beams n | Degree θ | Length of Lever l1 | Length of Lever l2 |
---|---|---|---|---|---|---|
38 μm | 50 μm | 2150 μm | 3 | 3° | 100 μm | 900 μm |
Serial | The Number of Teeth | Voltage/mV | Overload/m·s−2 |
---|---|---|---|
1 | 6 | 194 | 9593 |
2 | 7 | 315 | 15,577 |
3 | 8 | 420 | 20,769 |
4 | 9 | 525 | 25,962 |
5 | 10 | 680 | 33,628 |
6 | 11 | 840 | 41,540 |
7 | 12 | 990 | 49,955 |
8 | 14 | 1100 | 54,395 |
Voltage/V | Current/A | Displacement/μm | Output Displacement Curve |
---|---|---|---|
1 | 0 | — | |
2 | 0.01 | — | |
3 | 0.01 | 3.87 | |
4 | 0.02 | 4.73 | |
5 | 0.03 | 7.97 | |
6 | 0.04 | 13.53 | |
7 | 0.05 | 20.74 | |
8 | 0.06 | 30.65 | |
9 | 0.06 | 44.57 | |
10 | 0.07 | 59.63 | |
11 | 0.07 | 71.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Hu, T.; Wang, Y.; Zhao, Y.; Tian, Z.; Xue, W. Research on Multiphysics-Driven MEMS Safety and Arming Devices. Micromachines 2024, 15, 1194. https://doi.org/10.3390/mi15101194
Fan X, Hu T, Wang Y, Zhao Y, Tian Z, Xue W. Research on Multiphysics-Driven MEMS Safety and Arming Devices. Micromachines. 2024; 15(10):1194. https://doi.org/10.3390/mi15101194
Chicago/Turabian StyleFan, Xinyu, Tengjiang Hu, Yifei Wang, Yulong Zhao, Zhongwang Tian, and Wei Xue. 2024. "Research on Multiphysics-Driven MEMS Safety and Arming Devices" Micromachines 15, no. 10: 1194. https://doi.org/10.3390/mi15101194
APA StyleFan, X., Hu, T., Wang, Y., Zhao, Y., Tian, Z., & Xue, W. (2024). Research on Multiphysics-Driven MEMS Safety and Arming Devices. Micromachines, 15(10), 1194. https://doi.org/10.3390/mi15101194