Controllable Synthesis, Formation Mechanism, and Photocatalytic Activity of Tellurium with Various Nanostructures
Abstract
:1. Introduction
2. Experimental Process
2.1. Synthesis of Te with Various Nanostructures
2.2. Characterizations of Te with Various Nanostructures
2.3. Photocatalytic Activity Test
2.3.1. Photocatalytic Degradation of Methylene Blue (MB)
2.3.2. Photocatalytic Hydrogen (H2) Evolution
2.4. Photoelectrochemical Measurements
3. Results and Discussion
3.1. Morphological and Structural Characterization
3.2. Optical and Photoelectrochemical Properties
3.3. The Formation Mechanisms of Various Nanostructures for Te
3.4. Photocatalytic Degradation of MB and Hydrogen Generation
3.4.1. Photocatalytic Degradation of MB
3.4.2. Photocatalytic Hydrogen (H2) Generation
3.4.3. Photocatalytic Recyclability and Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Faber, M.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542. [Google Scholar] [CrossRef]
- Zou, J.; Wu, D.; Luo, J.; Xing, Q.; Luo, X.; Dong, W.; Luo, S.; Du, H.; Suib, S.L. A Strategy for one-pot conversion of organic pollutants into useful hydrocarbons through coupling photodegradation of MB with photoreduction of CO2. ACS Catal. 2016, 6, 6861–6867. [Google Scholar] [CrossRef]
- Zhen, W.; Yuan, X.; Shi, X.; Xue, C. Grafting molecular cobalt-oxo cubane catalyst on polymeric carbon nitride for efficient photocatalytic water oxidation. Chem. Asian J. 2020, 17, 2480–2486. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Fang, P.; Wu, W.; Ding, J.; Jiang, L.; Zhao, X.; Li, C.; Yang, M.; Li, Y.; Wang, D. Solvothermal-assisted synthesis of self-assembling TiO2 nanorods on large graphitic carbon nitride sheets with their anti-recombination in the photocatalytic removal of Cr(vi) and rhodamine B under visible light irradiation. Nanoscale 2017, 9, 3231–3245. [Google Scholar] [CrossRef] [PubMed]
- Yavuz, C.; Erten-Ela, S. Solar light-responsive α-Fe2O3/CdS/g-C3N4 ternary photocatalyst for photocatalytic hydrogen production and photodegradation of methylene blue. J. Alloys Compd. 2022, 908, 164584. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J.; Yang, J.; Su, Y.; Fan, X.; Wu, Y.; Yu, C.; Wang, Z. β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy Environ. Sci. 2015, 73, 887–896. [Google Scholar] [CrossRef]
- Hong, Y.; Li, C.; Yin, B.; Li, D.; Zhang, Z.; Mao, B.; Fan, W.; Gu, W.; Shi, W. Promoting visible-light-induced photocatalytic degradation of tetracycline by an efficient and stable beta-Bi2O3@g-C3N4 core/shell nanocomposite. Chem. Eng. J. 2018, 338, 137–146. [Google Scholar] [CrossRef]
- An, T.; Yang, H.; Li, G.; Song, W.; Cooper, W.J.; Nie, X. Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water. Appl. Catal. B 2010, 94, 288–294. [Google Scholar] [CrossRef]
- Nie, Y.; Yu, F.; Wang, L.; Xing, Q.; Liu, X.; Pei, Y.; Zou, J.; Dai, W.; Li, Y.; Suib, S. Photocatalytic degradation of organic pollutants coupled with simultaneous photocatalytic H2 evolution over graphene quantum dots/Mn-N-TiO2/g-C3N4 composite catalysts: Performance and mechanism. Appl. Catal. B 2018, 227, 312–321. [Google Scholar] [CrossRef]
- Chen, X.; Tang, W.; Cai, L.; Zhu, Y.; Peng, S.; Li, X.; Hu, X.; Qiao, L.; Liu, S. Superdispersed NiCo2S4 nanoparticles anchored on reduced graphene oxide for efficient hydrogen evolution reaction in acidic and alkaline media. J. Alloys Compd. 2022, 918, 165757. [Google Scholar] [CrossRef]
- Wang, M.; Tang, W.; Liu, S.; Liu, X.; Chen, X.; Hu, X.; Qiao, L.; Sui, Y. Design of earth-abundant ternary Fe1−xCoxS2 on RGO as efficient electrocatalysts for hydrogen evolution reaction. J. Alloys Compd. 2021, 862, 158610. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Hashimoto, K.; Kominami, H. Visible-light-induced Hydrogen and Oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation. J. Am. Chem. Soc. 2014, 136, 586–589. [Google Scholar] [CrossRef] [PubMed]
- Zhen, W.; Ning, X.; Yang, B.; Wu, Y.; Li, Z.; Lu, G. The enhancement of CdS photocatalytic activity for water splitting via anti-photocorrosion by coating Ni2P shell and removing nascent formed oxygen with artificial gill. Appl. Catal. B 2018, 221, 243–257. [Google Scholar] [CrossRef]
- Bolm, C.; Hernández, J.G. From Synthesis of amino acids and peptides to enzymatic catalysis: A bottom-up approach in mechanochemistry. ChemSusChem 2018, 11, 1410–1420. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Zhang, K.; Yang, G.; Li, Y.; Liu, X.; Chang, K.; Xuan, Y.; Ye, J. Ultrafine nano 1T-MoS2 monolayers with NiOx as dual co-catalysts over TiO2 photoharvester for efficient photocatalytic hydrogen evolution. Appl. Catal. B 2020, 279, 119387. [Google Scholar] [CrossRef]
- Zhen, W.; Yuan, X.; Ning, X.; Gong, X.; Xue, C. Building Oxime-Ni2+ complex on polymeric carbon nitride: Molecular-level design of highly efficient hydrogen generation photocatalysts. ACS Appl. Mater. Interfaces 2020, 12, 868–876. [Google Scholar] [CrossRef]
- Zhen, W.; Ning, X.; Wang, M.; Wu, Y.; Lu, G. Enhancing hydrogen generation via fabricating peroxide decomposition layer over NiSe/MnO2-CdS catalyst. J. Catal. 2018, 367, 269–282. [Google Scholar] [CrossRef]
- Wang, D.; Ye, P.; Li, K.; Zeng, H.; Nie, Y.; Dong, F.; Xing, Q.; Zou, J. Highly durable isotypic heterojunction generated by covalent cross-linking with organic linkers for improving visible-light-driven photocatalytic performance. Appl. Catal. B 2020, 260, 118182. [Google Scholar] [CrossRef]
- Wu, W.; Qiu, G.; Wang, Y.; Wang, R.; Ye, P. Tellurene: Its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev. 2018, 47, 7203–7212. [Google Scholar] [CrossRef]
- Ma, C.R.; Yan, J.H.; Huang, Y.C.; Wang, C.X.; Yang, G.W. The optical duality of tellurium nanospheres for broadband solar energy harvesting and efficient photothermal conversion. Sci. Adv. 2018, 4, 9894. [Google Scholar] [CrossRef] [PubMed]
- Zhong, B.; Fei, G.; Fu, W.; Gong, X. Controlled solvothermal synthesis of single-crystal tellurium nanowires, nanotubes and trifold structures and their photoelectrical properties. CrystEngComm 2017, 19, 2813–2820. [Google Scholar] [CrossRef]
- Shen, C.; Liu, Y.; Wu, J.; Xu, C.; Zhou, C. Tellurene photodetector with high gain and wide bandwidth. ACS Nano 2020, 14, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ferreira, R.D.B.; Wang, R.; Li, G.; Qin, Y.; Ye, P.D.; Sabbaghi, A.; Wu, W. Data-driven and probabilistic learning of the process-structure-property relationship in solution-grown tellurene for optimized nanomanufacturing of high-performance nanoelectronics. Nano Energy 2019, 57, 480–491. [Google Scholar] [CrossRef]
- Alegaonkar, A.P.; Pardeshi, S.K.; Alegaonkar, P.S. Tellurium-reduced graphene oxide two-dimensional (2D) architecture for efficient photo-catalytic effluent: Solution for industrial water waste. Diam. Relat. Mater. 2020, 108, 107994. [Google Scholar] [CrossRef]
- Guisbiers, G.; Mimun, L.C.; Mendoza-Cruz, R.; Nash, K.L. Synthesis of tunable tellurium nanoparticles. Semicond. Sci. Technol. 2017, 32, 04LT01. [Google Scholar] [CrossRef]
- Huang, Y.; Bai, J.; Zhou, G.; Bi, S.; Wei, D.; Seo, H.J. Co-precipitation synthesis, band modulation and improved visible-light-driven photocatalysis of Te4+/Ti4+-codoped Bi3Nb17O47. Ceram. Int. 2020, 46, 7131–7141. [Google Scholar] [CrossRef]
- Safdar, M.; Zhan, X.; Niu, M.; Mirza, M.; Zhao, Q.; Wang, Z. Site-specific nucleation and controlled growth of a vertical tellurium nanowire array for high performance field emitters. Nanotechnology 2013, 24, 185705. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, G.; Wang, Z.; Tang, T.; Wang, X.; Wang, C.; Fu, S.; Xing, F.; Xu, X. Broadband nonlinear absorption properties of two-dimensional hexagonal tellurene nanosheets. Nanoscale 2019, 11, 17058–17064. [Google Scholar] [CrossRef]
- Wang, Q.; Safdar, M.; Xu, K.; Mirza, M.; Wang, Z.; He, J. Van der waals epitaxy and photoresponse of hexagonal Tellurium nanoplates on flexible mica sheets. ACS Nano 2014, 8, 7497–7505. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, G.; Wang, R.; Huang, S.; Wang, Q.; Du, Y.; Goddard, W.A., III; Kim, M.J.; Xu, X.; Ye, P.D.; et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 2018, 1, 228–236. [Google Scholar] [CrossRef]
- Du, Y.; Qiu, G.; Wang, Y.; Si, M.; Xu, X.; Wu, W.; Ye, P. One-dimensional van der waals material Tellurium: Raman Spectroscopy under Strain and Magneto-Transport. Nano Lett. 2017, 17, 3965–3973. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, G.; Zheng, X.; Pan, H.; Zhu, J. Competitive adsorption between a polymer and its monomeric analog enables precise modulation of nanowire synthesis. Chem 2018, 4, 2451–2462. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, X.; Wang, W. Poly(vinylpyrrolidone): A new reductant for preparation of tellurium nanorods, nanowires, and tubes from TeO2. Nanotechnology 2006, 17, 645–650. [Google Scholar] [CrossRef]
- Yang, T.; Oliver, S.; Chen, Y.; Boyer, C. Chandrawati. R. Tuning crystallization and morphology of zinc oxide with polyvinylpyrrolidone: Formation mechanisms and antimicrobial activity. J. Colloid Interface Sci. 2019, 546, 43–52. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Z.; Han, G.; Cheng, L.; Xu, H.; Zou, J. Trifold Tellurium one-dimensional nanostructures and their formation mechanism. Cryst. Growth Des. 2013, 13, 4796–4802. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zou, H.; Wang, C.; Lv, S.; Jin, Y.; Hu, H.; Wang, X.; Chi, Y.; Yang, X. Controllable Synthesis, Formation Mechanism, and Photocatalytic Activity of Tellurium with Various Nanostructures. Micromachines 2024, 15, 1. https://doi.org/10.3390/mi15010001
Wang H, Zou H, Wang C, Lv S, Jin Y, Hu H, Wang X, Chi Y, Yang X. Controllable Synthesis, Formation Mechanism, and Photocatalytic Activity of Tellurium with Various Nanostructures. Micromachines. 2024; 15(1):1. https://doi.org/10.3390/mi15010001
Chicago/Turabian StyleWang, Huan, Hanlin Zou, Chao Wang, Sa Lv, Yujie Jin, Hongliang Hu, Xinwei Wang, Yaodan Chi, and Xiaotian Yang. 2024. "Controllable Synthesis, Formation Mechanism, and Photocatalytic Activity of Tellurium with Various Nanostructures" Micromachines 15, no. 1: 1. https://doi.org/10.3390/mi15010001
APA StyleWang, H., Zou, H., Wang, C., Lv, S., Jin, Y., Hu, H., Wang, X., Chi, Y., & Yang, X. (2024). Controllable Synthesis, Formation Mechanism, and Photocatalytic Activity of Tellurium with Various Nanostructures. Micromachines, 15(1), 1. https://doi.org/10.3390/mi15010001