Two−Dimensional Planar Penta−NiPN with Ultrahigh Carrier Mobility and Its Potential Application in NO and NO2 Gas Sensing
Abstract
1. Introduction
2. Methods
3. Results and Discussion
3.1. Structure and Stability
3.2. Electronic Structure
3.3. Gas Adsorption
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, S.; Farha, F.; Li, Q.; Wan, Y.; Xu, Y.; Zhang, T.; Ning, H. Review on Smart Gas Sensing Technology. Sensors 2019, 19, 3760. [Google Scholar] [CrossRef] [PubMed]
- Mamom, J.; Ratanadecho, P.; Mingmalairak, C.; Rungroungdouyboon, B. Humidity−Sensing Mattress for Long−Term Bedridden Patients with Incontinence−Associated Dermatitis. Micromachines 2023, 14, 1178. [Google Scholar] [CrossRef] [PubMed]
- Marti, E.; De Miguel, M.A.; Garcia, F.; Perez, J. A Review of Sensor Technologies for Perception in Automated Driving. IEEE Intell. Transp. Syst. Mag. 2019, 11, 94–108. [Google Scholar] [CrossRef]
- Tyagi, D.; Wang, H.; Huang, W.; Hu, L.; Tang, Y.; Guo, Z.; Ouyang, Z.; Zhang, H. Recent Advances in Two−Dimensional−Material−Based Sensing Technology toward Health and Environmental Monitoring Applications. Nanoscale 2020, 12, 3535–3559. [Google Scholar] [CrossRef]
- Zhang, L.; Khan, K.; Zou, J.; Zhang, H.; Li, Y. Recent Advances in Emerging 2D Material-Based Gas Sensors: Potential in Disease Diagnosis. Adv. Mater. Interfaces 2019, 6, 1901329. [Google Scholar] [CrossRef]
- Buckley, D.J.; Black, N.C.G.; Castanon, E.G.; Melios, C.; Hardman, M.; Kazakova, O. Frontiers of Graphene and 2D Material−Based Gas Sensors for Environmental Monitoring. 2D Mater. 2020, 7, 032002. [Google Scholar] [CrossRef]
- Yang, S.; Jiang, C.; Wei, S. Gas Sensing in 2D Materials. Appl. Phys. Rev. 2017, 4, 021304. [Google Scholar] [CrossRef]
- Ou, J.Z.; Ge, W.; Carey, B.; Daeneke, T.; Rotbart, A.; Shan, W.; Wang, Y.; Fu, Z.; Chrimes, A.F.; Wlodarski, W.; et al. Physisorption−Based Charge Transfer in Two−Dimensional SnS2 for Selective and Reversible NO2 Gas Sensing. ACS Nano 2015, 9, 10313–10323. [Google Scholar] [CrossRef]
- Qin, Z.; Song, X.; Wang, J.; Li, X.; Wu, C.; Wang, X.; Yin, X.; Zeng, D. Development of Flexible Paper Substrate Sensor Based on 2D WS2 with S Defects for Room−Temperature NH3 Gas Sensing. Appl. Surf. Sci. 2022, 573, 151535. [Google Scholar] [CrossRef]
- Liu, X.; Ma, T.; Pinna, N.; Zhang, J. Two−Dimensional Nanostructured Materials for Gas Sensing. Adv. Funct. Mater. 2017, 27, 1702168. [Google Scholar] [CrossRef]
- Thomas, S.; Asle Zaeem, M. Superior Sensing Performance of Two−Dimensional Ruthenium Carbide (2D−RuC) in Detection of NO, NO2 and NH3 Gas Molecules. Appl. Surf. Sci. 2021, 563, 150232. [Google Scholar] [CrossRef]
- Hakimi Raad, N.; Manavizadeh, N.; Frank, I.; Nadimi, E. Gas Sensing Properties of a Two−Dimensional Graphene/h−BN Multi−Heterostructure toward H2O, NH3 and NO2: A First Principles Study. Appl. Surf. Sci. 2021, 565, 150454. [Google Scholar] [CrossRef]
- Aasi, A.; Mortazavi, B.; Panchapakesan, B. Two−Dimensional PdPS and PdPSe Nanosheets: Novel Promising Sensing Platforms for Harmful Gas Molecules. Appl. Surf. Sci. 2022, 579, 152115. [Google Scholar] [CrossRef]
- Bykov, M.; Bykova, E.; Ponomareva, A.V.; Tasnádi, F.; Chariton, S.; Prakapenka, V.B.; Glazyrin, K.; Smith, J.S.; Mahmood, M.F.; Abrikosov, I.A.; et al. Realization of an Ideal Cairo Tessellation in Nickel Diazenide NiN2: High−Pressure Route to Pentagonal 2D Materials. ACS Nano 2021, 15, 13539–13546. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Li, L.; Yu, Y.; Ye, G.J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.H.; Zhang, Y. Black Phosphorus Field−Effect Transistors. Nat. Nanotechnol. 2014, 9, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.-H.; Song, Y.-Q.; Chen, Q.; Xue, K.-H.; Miao, X.-S. Single−Layer Planar Penta−X2N4 (X = Ni, Pd and Pt) as Direct−Bandgap Semiconductors from First Principle Calculations. Appl. Surf. Sci. 2019, 469, 456–462. [Google Scholar] [CrossRef]
- Mortazavi, B.; Zhuang, X.; Rabczuk, T.; Shapeev, A.V. Outstanding Thermal Conductivity and Mechanical Properties in the Direct Gap Semiconducting Penta−NiN2 Monolayer Confirmed by First−Principles. Phys. E Low−Dimens. Syst. Nanostructures 2022, 140, 115221. [Google Scholar] [CrossRef]
- Hu, Y.; Zhao, X.; Yang, Y.; Xiao, W.; Zhou, X.; Wang, D.; Wang, G.; Bi, J.; Luo, Z.; Liu, X. Coordination Engineering on Novel 2D Pentagonal NiN2 for Bifunctional Oxygen Electrocatalysts. Appl. Surf. Sci. 2023, 614, 156256. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, J.; Shen, Y.; Kang, W.; Wang, Q. Effect of High Order Phonon Scattering on the Thermal Conductivity and Its Response to Strain of a Penta−NiN2 Sheet. J. Phys. Chem. Lett. 2022, 13, 5734–5741. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, X.-F. Adsorption Behaviors of Small Molecules on Two−Dimensional Penta−NiN2 Layers: Implications for NO and NO2 Gas Sensors. ACS Appl. Nano Mater. 2023, 6, 6151–6160. [Google Scholar] [CrossRef]
- Yuan, J.-H.; Zhang, B.; Song, Y.-Q.; Wang, J.-F.; Xue, K.-H.; Miao, X.-S. Planar Penta−Transition Metal Phosphide and Arsenide as Narrow−Gap Semiconductors with Ultrahigh Carrier Mobility. J. Mater. Sci. 2019, 54, 7035–7047. [Google Scholar] [CrossRef]
- Qian, S.; Sheng, X.; Xu, X.; Wu, Y.; Lu, N.; Qin, Z.; Wang, J.; Zhang, C.; Feng, E.; Huang, W.; et al. Penta−MX2 (M = Ni, Pd and Pt; X = P and As) Monolayers: Direct Band−Gap Semiconductors with High Carrier Mobility. J. Mater. Chem. C 2019, 7, 3569–3575. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Sun, J.; Sun, R.; Wang, Z.F.; Yang, J. Penta−Pt2N4: An Ideal Two−Dimensional Material for Nanoelectronics. Nanoscale 2018, 10, 16169–16177. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Liu, X.; Zhao, X.; Wang, J.; Zhang, X.; Zhao, M. Electronic Properties of a π−Conjugated Cairo Pentagonal Lattice: Direct Band Gap, Ultrahigh Carrier Mobility, and Slanted Dirac Cones. Phys. Rev. B 2018, 98, 085437. [Google Scholar] [CrossRef]
- Shao, X.; Sun, L.; Ma, X.; Feng, X.; Gao, H.; Ding, C.; Zhao, M. Multiple Dirac Cones and Lifshitz Transition in a Two−Dimensional Cairo Lattice as a Hawking Evaporation Analogue. J. Phys. Condens. Matter 2021, 33, 365001. [Google Scholar] [CrossRef]
- Raval, D.; Gupta, S.K.; Gajjar, P.N. Detection of H2S, HF and H2 Pollutant Gases on the Surface of Penta−PdAs2 Monolayer Using DFT Approach. Sci. Rep. 2023, 13, 699. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Xiong, S.; Xia, F.; Shao, Z.; Zhao, J.; Zhang, X.; Jie, J.; Zhang, X. Tuning the Electronic Transport Anisotropy in α−Phase Phosphorene through Superlattice Design. Phys. Rev. B 2018, 97, 085119. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total−Energy Calculations Using a Plane−Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of Ab−Initio Total Energy Calculations for Metals and Semiconductors Using a Plane−Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self−Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Krukau, A.V.; Vydrov, O.A.; Izmaylov, A.F.; Scuseria, G.E. Influence of the Exchange Screening Parameter on the Performance of Screened Hybrid Functionals. J. Chem. Phys. 2006, 125, 224106. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin−Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA−Type Density Functional Constructed with a Long−Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Togo, A.; Oba, F.; Tanaka, I. First−Principles Calculations of the Ferroelastic Transition between Rutile−Type and CaCl2−Type SiO2 at High Pressures. Phys. Rev. B 2008, 78, 134106. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.-F.; Gao, P.-F.; Fang, D.-Q.; Zhang, E.-H.; Zhang, S.-L. Structural, Elastic, Electronic, and Optical Properties of the Tricycle−like Phosphorene. Phys. Chem. Chem. Phys. 2017, 19, 2245–2251. [Google Scholar] [CrossRef]
- Born, M.; Huang, K. Dynamical Theory of Crystal Lattices; Clarendon Press: Oxford, UK, 1954. [Google Scholar]
- Yuan, J.-H.; Xue, K.-H.; Wang, J.-F.; Miao, X.-S. Gallium Thiophosphate: An Emerging Bidirectional Auxetic Two−Dimensional Crystal with Wide Direct Band Gap. J. Phys. Chem. Lett. 2019, 10, 4455–4462. [Google Scholar] [CrossRef]
- Becke, A.D.; Edgecombe, K.E. A Simple Measure of Electron Localization in Atomic and Molecular Systems. J. Chem. Phys. 1990, 92, 5397–5403. [Google Scholar] [CrossRef]
- Savin, A.; Jepsen, O.; Flad, J.; Andersen, O.K.; Preuss, H.; von Schnering, H.G. Electron Localization in Solid−State Structures of the Elements: The Diamond Structure. Angew. Chem. Int. Ed. Engl. 1992, 31, 187–188. [Google Scholar] [CrossRef]
- Tang, W.; Sanville, E.; Henkelman, G. A Grid−Based Bader Analysis Algorithm without Lattice Bias. J. Phys. Condens. Matter 2009, 21, 084204. [Google Scholar] [CrossRef]
- Bardeen, J.; Shockley, W. Deformation Potentials and Mobilities in Non−Polar Crystals. Phys. Rev. 1950, 80, 72–80. [Google Scholar] [CrossRef]
- Yuan, J.-H.; Xue, K.-H.; Miao, X. Two−Dimensional ABC3 (A = Sc, Y; B = Al, Ga, In; C = S, Se, Te) with Intrinsic Electric Field for Photocatalytic Water Splitting. Int. J. Hydrog. Energy 2023, 48, 5929–5939. [Google Scholar] [CrossRef]
- Yuan, J.-H.; Xue, K.-H.; Wang, J.; Miao, X. Designing Stable 2D Materials Solely from VIA Elements. Appl. Phys. Lett. 2021, 119, 223101. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, G.; Zhang, Y.-W. Polarity−Reversed Robust Carrier Mobility in Monolayer MoS2 Nanoribbons. J. Am. Chem. Soc. 2014, 136, 6269–6275. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Ma, Y.; Li, Y.; Heine, T. GeP3: A Small Indirect Band Gap 2D Crystal with High Carrier Mobility and Strong Interlayer Quantum Confinement. Nano Lett. 2017, 17, 1833–1838. [Google Scholar] [CrossRef]
- Jiang, J.-W.; Park, H.S. Negative Poisson’s Ratio in Single−Layer Black Phosphorus. Nat. Commun. 2014, 5, 4727. [Google Scholar] [CrossRef]
- Cheng, M.-Q.; Chen, Q.; Yang, K.; Huang, W.-Q.; Hu, W.-Y.; Huang, G.-F. Penta−Graphene as a Potential Gas Sensor for NOx Detection. Nanoscale Res. Lett. 2019, 14, 306. [Google Scholar] [CrossRef]
- Wei, M.; Dou, X.; Zhao, L.; Du, J.; Jiang, G. Monolayer Penta−BCN: A Promising Candidate for Harmful Gases Detection. Sens. Actuators Phys. 2022, 334, 113326. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, G.; Yi, W.; Yang, T.; Liu, X. Penta−BeP2 Monolayer: A Superior Sensor for Detecting Toxic Gases in the Air with Excellent Sensitivity, Selectivity, and Reversibility. ACS Appl. Mater. Interfaces 2022, 14, 35229–35236. [Google Scholar] [CrossRef] [PubMed]
Materials | a (Å) | b (Å) | lNi−N (Å) | lNi−P (Å) | lN−N/lN−P/lP−P (Å) | Ecoh (eV) | Eg (eV) |
---|---|---|---|---|---|---|---|
NiPN NiN2 [17] NiP2 [22] | 4.995 4.53 5.55 | 5.011 4.53 5.55 | 1.929, 1.910 1.88 −− | 2.125, 2.107 −− 2.16 | 1.605 1.24 2.11 | 4.55 4.98 4.09 | 1.237 1.10 0.81 |
Materials | Carrier Type | ma* | mb* | |Ela| | |Elb| | Ca2D | Cb2D | μa2D | μb2D |
---|---|---|---|---|---|---|---|---|---|
NiPN | Electron | 0.38 | 0.36 | 2.10 | 0.85 | 147.68 | 146.24 | 0.51 | 3.24 |
Hole | 0.22 | 0.24 | 0.74 | 0.99 | 147.68 | 146.24 | 11.36 | 5.76 | |
NiP2 [22] | Electron | 0.106 | 0.140 | 5.23 | 5.23 | 118.19 | 118.19 | 0.71 | 0.54 |
Hole | 0.119 | 0.170 | 1.53 | 1.53 | 118.19 | 118.19 | 6.35 | 4.45 |
Gas Molecules | Ea (eV) | d (Å) | Q (e) | |
---|---|---|---|---|
CO CO2 CH4 H2 H2O H2S N2 NO NO2 NH3 SO2 | −0.640 −0.184 −0.162 −0.072 −0.272 −0.316 −0.100 −0.751 −1.011 −0.545 −0.445 | 1.834 3.054 2.661 2.613 2.248 2.210 3.117 1.862 2.065 2.119 2.573 | 0 0 0 0 0 0 0 0.695 0.878 0 0 | +0.100 +0.026 +0.010 +0.011 +0.025 −0.100 +0.015 +0.216 +0.553 −0.103 +0.187 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Li, G.; Yuan, J.-H.; Wang, J.; Zhang, P.; Shan, Y. Two−Dimensional Planar Penta−NiPN with Ultrahigh Carrier Mobility and Its Potential Application in NO and NO2 Gas Sensing. Micromachines 2023, 14, 1407. https://doi.org/10.3390/mi14071407
Wang H, Li G, Yuan J-H, Wang J, Zhang P, Shan Y. Two−Dimensional Planar Penta−NiPN with Ultrahigh Carrier Mobility and Its Potential Application in NO and NO2 Gas Sensing. Micromachines. 2023; 14(7):1407. https://doi.org/10.3390/mi14071407
Chicago/Turabian StyleWang, Hao, Gang Li, Jun-Hui Yuan, Jiafu Wang, Pan Zhang, and Yahui Shan. 2023. "Two−Dimensional Planar Penta−NiPN with Ultrahigh Carrier Mobility and Its Potential Application in NO and NO2 Gas Sensing" Micromachines 14, no. 7: 1407. https://doi.org/10.3390/mi14071407
APA StyleWang, H., Li, G., Yuan, J.-H., Wang, J., Zhang, P., & Shan, Y. (2023). Two−Dimensional Planar Penta−NiPN with Ultrahigh Carrier Mobility and Its Potential Application in NO and NO2 Gas Sensing. Micromachines, 14(7), 1407. https://doi.org/10.3390/mi14071407