Difference in Intestine Content of Caenorhabditis elegans When Fed on Non-Pathogenic or Pathogenic Bacteria
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Worm and Bacteria Culture and Preparation
2.3. Fabrication of the Microfluidic Chip
2.4. Image Processing and Statistical Analysis
2.5. Microscopy Platform and the Imaging Parameters
3. Experimental
3.1. The Design and Operation of the Microfluidic Chip Platform
3.2. Experimental Planning
3.3. Imaging Procedure and Analysis
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christensen, K.V.; Morch, M.G.; Morthorst, T.H.; Lykkemark, S.; Olsen, A. Microbiota, Probiotic Bacteria and Ageing. In Ageing: Lessons from C. elegans; Olsen, A., Gill, M.S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 411–429. ISBN 978-3-319-44703-2. [Google Scholar]
- Dirksen, P.; Marsh, S.A.; Braker, I.; Heitland, N.; Wagner, S.; Nakad, R.; Mader, S.; Petersen, C.; Kowallik, V.; Rosenstiel, P.; et al. The Native Microbiome of the Nematode Caenorhabditis elegans: Gateway to a New Host-Microbiome Model. BMC Biol. 2016, 14, 17230–17243. [Google Scholar] [CrossRef]
- Mazmanian, S.K.; Liu, C.H.; Tzianabos, A.O.; Kasper, D.L. An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System. Cell 2005, 122, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.; Jia, W.; Pettersson, S. Host-Gut Microbiota Metabolic Interactions. Science 2012, 336, 1262–1267. [Google Scholar] [CrossRef]
- Buffie, C.G.; Pamer, E.G. Microbiota-Mediated Colonization Resistance against Intestinal Pathogens. Nat. Rev. Immunol. 2013, 13, 790–801. [Google Scholar] [CrossRef]
- Wang, Y.; Kasper, L.H. The Role of Microbiome in Central Nervous System Disorders. Brain Behav. Immun. 2014, 38, 1–12. [Google Scholar] [CrossRef]
- Ma, Q.; Xing, C.; Long, W.; Wang, H.Y.; Liu, Q.; Wang, R.-F. Impact of Microbiota on Central Nervous System and Neurological Diseases: The Gut-Brain Axis. J. Neuroinflamm. 2019, 16, 53. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, L.S.; Walhout, A.J.M. Worms, Bacteria and Micronutrients: An Elegant Model of Our Diet. Trends Genet. 2014, 30, 496–503. [Google Scholar] [CrossRef]
- Cabreiro, F.; Gems, D. Worms Need Microbes Too: Microbiota, Health and Aging in Caenorhabditis elegans: The C. Elegans -Microbe Holobiont. EMBO Mol. Med. 2013, 5, 1300–1310. [Google Scholar] [CrossRef]
- Zhang, J.; Holdorf, A.D.; Walhout, A.J.C. Elegans and Its Bacterial Diet as a Model for Systems-Level Understanding of Host–Microbiota Interactions. Curr. Opin. Biotechnol. 2017, 46, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Sifri, C.D.; Begun, J.; Ausubel, F.M. The Worm Has Turned—Microbial Virulence Modeled in Caenorhabditis elegans. Trends Microbiol. 2005, 13, 119–127. [Google Scholar] [CrossRef]
- Shaye, D.D.; Greenwald, I. OrthoList: A Compendium of C. elegans Genes with Human Orthologs. PLoS ONE 2011, 6, e20085. [Google Scholar] [CrossRef] [PubMed]
- Corsi, A.K.; Wightman, B.; Chalfie, M. A Transparent Window into Biology: A Primer on Caenorhabditis elegans. Genetics 2015, 200, 387–407. [Google Scholar] [CrossRef]
- Stiernagle, T. Maintenance of C. elegans. WormBook. The C. elegans Research Community. In WormBook; WormBook: Pasadena, CA, USA, 2006. [Google Scholar]
- Portal-Celhay, C.; Bradley, E.R.; Blaser, M.J. Control of Intestinal Bacterial Proliferation in Regulation of Lifespan in Caenorhabditis elegans. BMC Microbiol. 2012, 12, 49. [Google Scholar] [CrossRef]
- Tan, M.-W.; Mahajan-Miklos, S.; Ausubel, F.M. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa Used to Model Mammalian Bacterial Pathogenesis. PNAS 1999, 96, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Garigan, D.; Hsu, A.-L.; Fraser, A.G.; Kamath, R.S.; Ahringer, J.; Kenyon, C. Genetic Analysis of Tissue Aging in Caenorhabditis elegans: A Role for Heat-Shock Factor and Bacterial Proliferation. Genetics 2002, 161, 1101–1112. [Google Scholar] [CrossRef] [PubMed]
- Portal-Celhay, C.; Blaser, M.J. Competition and Resilience between Founder and Introduced Bacteria in the Caenorhabditis elegans Gut. Infect. Immun. 2012, 80, 1288–1299. [Google Scholar] [CrossRef]
- McGee, M.D.; Weber, D.; Day, N.; Vitelli, C.; Crippen, D.; Herndon, L.A.; Hall, D.H.; Melov, S. Loss of Intestinal Nuclei and Intestinal Integrity in Aging C. elegans: Intestinal Changes in Aging C. elegans. Aging Cell 2011, 10, 699–710. [Google Scholar] [CrossRef]
- Tan, M.-W.; Rahme, L.G.; Sternberg, J.A.; Tompkins, R.G.; Ausubel, F.M. Pseudomonas aeruginosa Killing of Caenorhabditis elegans Used to Identify P. Aeruginosa Virulence Factors. PNAS 1999, 96, 2408–2413. [Google Scholar] [CrossRef]
- Gallagher, L.A.; Manoil, C. Pseudomonas aeruginosa PAO1 KillsCaenorhabditis elegans by Cyanide Poisoning. J. Bacteriol. 2001, 183, 6207–6214. [Google Scholar] [CrossRef]
- Garsin, D.A.; Villanueva, J.M.; Begun, J.; Kim, D.H.; Sifri, C.D.; Calderwood, S.B.; Ruvkun, G.; Ausubel, F.M. Long-Lived C. elegans Daf-2 Mutants Are Resistant to Bacterial Pathogens. Science 2003, 300, 1921. [Google Scholar] [CrossRef]
- Kirienko, N.V.; Kirienko, D.R.; Larkins-Ford, J.; Wählby, C.; Ruvkun, G.; Ausubel, F.M. Pseudomonas aeruginosa Disrupts Caenorhabditis elegans Iron Homeostasis, Causing a Hypoxic Response and Death. Cell Host Microbe 2013, 13, 406–416. [Google Scholar] [CrossRef]
- Cezairliyan, B.; Vinayavekhin, N.; Grenfell-Lee, D.; Yuen, G.J.; Saghatelian, A.; Ausubel, F.M. Identification of Pseudomonas aeruginosa Phenazines That Kill Caenorhabditis elegans. PLOS Pathog. 2013, 9, e1003101. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.-G.; Ma, Y.-C.; Dai, L.-L.; Zhang, K.-Q. Autophagy Protects C. elegans against Necrosis during Pseudomonas aeruginosa Infection. Proc. Natl. Acad. Sci. USA 2014, 111, 12480–12485. [Google Scholar] [CrossRef]
- Hoffman, C.L.; Lalsiamthara, J.; Aballay, A. Host Mucin Is Exploited by Pseudomonas aeruginosa To Provide Monosaccharides Required for a Successful Infection. mBio 2020, 11, e00060-20. [Google Scholar] [CrossRef] [PubMed]
- Utari, P.D.; Quax, W.J. Caenorhabditis elegans Reveals Novel Pseudomonas aeruginosa Virulence Mechanism. Trends Microbiol. 2013, 21, 315–316. [Google Scholar] [CrossRef]
- O’Loughlin, C.T.; Miller, L.C.; Siryaporn, A.; Drescher, K.; Semmelhack, M.F.; Bassler, B.L. A Quorum-Sensing Inhibitor Blocks Pseudomonas aeruginosa Virulence and Biofilm Formation. Proc. Natl. Acad. Sci. USA 2013, 110, 17981–17986. [Google Scholar] [CrossRef]
- Elizabeth Hulme, S.; Shevkoplyas, S.S.; Apfeld, J.; Fontana, W.; Whitesides, G.M. A Microfabricated Array of Clamps for Immobilizing and Imaging C. elegans. Lab A Chip 2007, 7, 1515–1523. [Google Scholar] [CrossRef]
- Cornaglia, M.; Lehnert, T.; Gijs, M.A.M. Microfluidic Systems for High-Throughput and High-Content Screening Using the Nematode Caenorhabditis elegans. Lab A Chip 2017, 17, 3736–3759. [Google Scholar] [CrossRef] [PubMed]
- San-Miguel, A.; Lu, H. Microfluidics as a Tool for C. Elegans Research. In WormBook: The Online Review of C. elegans Biology; NCBI: Bethesda, MD, USA, 2018. [Google Scholar]
- Gupta, B.P.; Rezai, P. Microfluidic Approaches for Manipulating, Imaging, and Screening C. elegans. Micromachines 2016, 7, 123. [Google Scholar] [CrossRef] [PubMed]
- Midkiff, D.; San-Miguel, A. Microfluidic Technologies for High Throughput Screening through Sorting and On-Chip Culture of C. Elegans. Molecules 2019, 24, 4292. [Google Scholar] [CrossRef] [PubMed]
- Bakhtina, N.A.; Korvink, J.G. Microfluidic Laboratories for C. Elegans Enhance Fundamental Studies in Biology. RSC Adv. 2014, 4, 4691–4709. [Google Scholar] [CrossRef]
- Mondal, S.; Hegarty, E.; Martin, C.; Gökçe, S.K.; Ghorashian, N.; Ben-Yakar, A. Large-Scale Microfluidics Providing High-Resolution and High-Throughput Screening of Caenorhabditis elegans Poly-Glutamine Aggregation Model. Nat. Commun. 2016, 7, 13023. [Google Scholar] [CrossRef]
- Hulme, S.E.; Shevkoplyas, S.S.; McGuigan, A.P.; Apfeld, J.; Fontana, W.; Whitesides, G.M. Lifespan-on-a-Chip: Microfluidic Chambers for Performing Lifelong Observation of C. Elegans. Lab Chip 2010, 10, 589–597. [Google Scholar] [CrossRef]
- Kopito, R.B.; Levine, E. Durable Spatiotemporal Surveillance of Caenorhabditis elegans Response to Environmental Cues. Lab Chip 2014, 14, 764–770. [Google Scholar] [CrossRef]
- Gokce, S.K.; Hegarty, E.M.; Mondal, S.; Zhao, P.; Ghorashian, N.; Hilliard, M.A.; Ben-Yakar, A. A Multi-Trap Microfluidic Chip Enabling Longitudinal Studies of Nerve Regeneration in Caenorhabditis elegans. Sci. Rep. 2017, 7, 9837. [Google Scholar] [CrossRef] [PubMed]
- Berger, S.; Lattmann, E.; Aegerter-Wilmsen, T.; Hengartner, M.; Hajnal, A.; deMello, A.; Casadevall i Solvas, X. Long-Term C. Elegans Immobilization Enables High Resolution Developmental Studies in Vivo. Lab Chip 2018, 18, 1359–1368. [Google Scholar] [CrossRef]
- Atakan, H.B.; Cornaglia, M.; Mouchiroud, L.; Auwerx, J.; Gijs, M.A.M. Automated High-Content Phenotyping from the First Larval Stage till the Onset of Adulthood of the Nematode Caenorhabditis elegans. Lab Chip 2019, 19, 120–135. [Google Scholar] [CrossRef]
- Gokce, S.K.; Guo, S.X.; Ghorashian, N.; Everett, W.N.; Jarrell, T.; Kottek, A.; Bovik, A.C.; Ben-Yakar, A. A Fully Automated Microfluidic Femtosecond Laser Axotomy Platform for Nerve Regeneration Studies in C. Elegans. PLoS ONE 2014, 9, e113917. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.X.; Bourgeois, F.; Chokshi, T.; Durr, N.J.; Hilliard, M.A.; Chronis, N.; Ben-Yakar, A. Femtosecond Laser Nanoaxotomy Lab-on-a-Chip for in Vivo Nerve Regeneration Studies. Nat. Methods 2008, 5, 531–533. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Z.; Ching, P.; Shi, Q.; Li, X. An Integrated Microfluidic Platform for Evaluating in Vivo Antimicrobial Activity of Natural Compounds Using a Whole-Animal Infection Model. Lab Chip 2013, 13, 3373–3382. [Google Scholar] [CrossRef]
- Lee, K.S.; Lee, L.E.; Levine, E. HandKAchip-Hands-Free Killing Assay on a Chip. Sci. Rep. 2016, 6, 35862. [Google Scholar] [CrossRef]
- Viri, V.; Cornaglia, M.; Atakan, H.B.; Lehnert, T.; Gijs, M.A.M. An in Vivo Microfluidic Study of Bacterial Transit in C. Elegans Nematodes. Lab Chip 2020, 20, 2696–2708. [Google Scholar] [CrossRef] [PubMed]
- Viri, V.; Arveiler, M.; Lehnert, T.; Gijs, M.A.M. An In Vivo Microfluidic Study of Bacterial Load Dynamics and Absorption in the C. Elegans Intestine. Micromachines 2021, 12, 832. [Google Scholar] [CrossRef]
- Shaham, S. Methods in Cell Biology. WormBook; The Rockefeller University: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Maddox, A.S.; Maddox, P.S. High-Resolution Imaging of Cellular Processes in Caenorhabditis elegans. Methods Cell Biol. 2012, 107, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Baugh, L.R. To Grow or Not to Grow: Nutritional Control of Development During Caenorhabditis elegans L1 Arrest. Genetics 2013, 194, 539–555. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri, S.; McGhee, J.D. Bacterial Residence Time in the Intestine of Caenorhabditis elegans. Nematology 2007, 9, 87–91. [Google Scholar] [CrossRef]
- Ball, G.; Parton, R.M.; Hamilton, R.S.; Davis, I. Chapter Two-A Cell Biologist’s Guide to High Resolution Imaging. In Methods in Enzymology; Imaging and Spectroscopic Analysis of Living Cells; Conn, P.M., Ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 504, pp. 29–55. [Google Scholar]
- Pincus, Z.; Mazer, T.C.; Slack, F.J. Autofluorescence as a Measure of Senescence in C. Elegans: Look to Red, Not Blue or Green. Aging 2016, 8, 889–898. [Google Scholar] [CrossRef]
- Teuscher, A.; Ewald, C. Overcoming Autofluorescence to Assess GFP Expression During Normal Physiology and Aging in Caenorhabditis elegans. Bio-Protocol 2018, 8, e2940. [Google Scholar] [CrossRef] [PubMed]
- Rezaeianaran, F.; Gijs, M.A.M. High-Resolution Imaging and Analysis of the Intestinal Bacterial Load of Caenorhabditis elegans during Early Adulthood. RSC Adv. 2023, 13, 17230–17243. [Google Scholar] [CrossRef]
- Irazoqui, J.E.; Troemel, E.R.; Feinbaum, R.L.; Luhachack, L.G.; Cezairliyan, B.O.; Ausubel, F.M. Distinct Pathogenesis and Host Responses during Infection of C. Elegans by P. Aeruginosa and S. Aureus. PLOS Pathog. 2010, 6, e1000982. [Google Scholar] [CrossRef]
- Zhu, J.; Cai, X.; Harris, T.L.; Gooyit, M.; Wood, M.; Lardy, M.; Janda, K.D. Disarming Pseudomonas aeruginosa Virulence Factor LasB by Leveraging a Caenorhabditis elegans Infection Model. Chem. Biol. 2015, 22, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.T.; Le, T.A.N.; Park, J.-S.; Kwon, H.C.; Kang, K. Antimicrobial Biophotonic Treatment of Ampicillin-Resistant Pseudomonas aeruginosa with Hypericin and Ampicillin Cotreatment Followed by Orange Light. Pharmaceutics 2019, 11, 641. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezaeianaran, F.; Gijs, M.A.M. Difference in Intestine Content of Caenorhabditis elegans When Fed on Non-Pathogenic or Pathogenic Bacteria. Micromachines 2023, 14, 1386. https://doi.org/10.3390/mi14071386
Rezaeianaran F, Gijs MAM. Difference in Intestine Content of Caenorhabditis elegans When Fed on Non-Pathogenic or Pathogenic Bacteria. Micromachines. 2023; 14(7):1386. https://doi.org/10.3390/mi14071386
Chicago/Turabian StyleRezaeianaran, Farzad, and Martin A. M. Gijs. 2023. "Difference in Intestine Content of Caenorhabditis elegans When Fed on Non-Pathogenic or Pathogenic Bacteria" Micromachines 14, no. 7: 1386. https://doi.org/10.3390/mi14071386
APA StyleRezaeianaran, F., & Gijs, M. A. M. (2023). Difference in Intestine Content of Caenorhabditis elegans When Fed on Non-Pathogenic or Pathogenic Bacteria. Micromachines, 14(7), 1386. https://doi.org/10.3390/mi14071386