Ultra-Wideband and High-Gain Vivaldi Antenna with Artificial Electromagnetic Materials
Abstract
:1. Introduction
- A four-element director is loaded into the gradient slot of the Vivaldi antenna unit, and the electromagnetic wave is directed to the edge of the director to enhance the middle and high frequency gain;
- “H”-shaped metamaterial units are designed and loaded into the aperture of the Vivaldi antenna in a periodic arrangement to make the beam more concentrated by changing the refractive index.
2. Antenna Design and Methods
2.1. Antenna Configuration
2.2. Working Principle
2.2.1. Director
2.2.2. Artificial Electromagnetic Material
2.2.3. Wideband Wilkinson Power Divider
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Serhir, M.; Lesselier, D. Wideband reflector-backed folded bowtie antenna for ground penetrating radar. IEEE Trans. Antennas Propag. 2017, 66, 1056–1063. [Google Scholar] [CrossRef]
- Comite, D.; Galli, A.; Catapano, I.; Soldovieri, F. The role of the antenna radiation pattern in the performance of a microwave tomographic approach for GPR imaging. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4337–4347. [Google Scholar] [CrossRef]
- Nahid, S.; Kumar, A.; Dadel, M. A rectangular slotted dielectric substrate loaded Antipodal Vivaldi SIW antenna for X-band applications. In Proceedings of the 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 17–18 March 2017; pp. 1–4. [Google Scholar]
- Ye, P.; Zhan, A.; Liu, Z.; Tian, M.; Zhang, X. A miniaturized Antipodal Vivaldi Antenna with director for ultra-wide-band applications. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL), Singapore, 19–22 November 2017; pp. 1984–1987. [Google Scholar]
- Eichenberger, J.; Yetisir, E.; Ghalichechian, N. High-gain antipodal Vivaldi antenna with pseudoelement and notched tapered slot operating at (2.5 to 57) GHz. IEEE Trans. Antennas Propag. 2019, 67, 4357–4366. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, W.; Yang, S.; Li, W.; Li, P.; Yang, S. A novel miniaturized Vivaldi antenna using tapered slot edge with resonant cavity structure for ultrawideband applications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1881–1884. [Google Scholar] [CrossRef]
- Huang, X.; Cao, J.; Zhong, W.; Jin, X. High gain antipodal Vivaldi antenna with novel V-shaped air-slot. Int. J. RF Microw. Comput.-Aided Eng. 2021, 31, e22818. [Google Scholar] [CrossRef]
- Pandey, G.; Verma, H.; Meshram, M. Compact antipodal Vivaldi antenna for UWB applications. Electron. Lett. 2015, 51, 308–310. [Google Scholar] [CrossRef]
- Natarajan, R.; George, J.V.; Kanagasabai, M.; Shrivastav, A.K. A compact antipodal Vivaldi antenna for UWB applications. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1557–1560. [Google Scholar] [CrossRef]
- Ghimire, J.; Choi, D.Y. Ultra-Wide Band Double-Slot Podal and Antipodal Vivaldi Antennas Feed by Compact Out-Of-Phase Power Divider Slot for Fluid Properties Determination. Sensors 2022, 22, 4543. [Google Scholar] [CrossRef]
- Bai, J.; Shi, S.; Prather, D.W. Ultra-wideband slot-loaded antipodal Vivaldi antenna array. In Proceedings of the 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, USA, 3–8 July 2011; pp. 79–81. [Google Scholar]
- Sun, H.H.; Lee, Y.H.; Luo, W.; Ow, L.F.; Yusof, M.L.M.; Yucel, A.C. Compact dual-polarized vivaldi antenna with high gain and high polarization purity for GPR applications. Sensors 2021, 21, 503. [Google Scholar] [CrossRef]
- Yesilyurt, O.; Turhan-Sayan, G. Metasurface lens for ultra-wideband planar antenna. IEEE Trans. Antennas Propag. 2019, 68, 719–726. [Google Scholar] [CrossRef]
- Alwareth, H.; Ibrahim, I.M.; Zakaria, Z.; Al-Gburi, A.J.A.; Ahmed, S.; Nasser, Z.A. A wideband high-gain microstrip array antenna integrated with frequency-selective surface for Sub-6 GHz 5G applications. Micromachines 2022, 13, 1215. [Google Scholar] [CrossRef]
- Al-Gburi, A.J.A.; Ibrahim, I.B.M.; Zeain, M.Y.; Zakaria, Z. Compact size and high gain of CPW-fed UWB strawberry artistic shaped printed monopole antennas using FSS single layer reflector. IEEE Access 2020, 8, 92697–92707. [Google Scholar] [CrossRef]
- Ajith, K.K.; Bhattacharya, A. Printed compact lens antenna for UHF band applications. Prog. Electromagn. Res. C 2016, 62, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Cui, T.J. Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 326–329. [Google Scholar] [CrossRef]
- Thummaluru, S.; Chaudhary, R. Mu-negative metamaterial filter-based isolation technique for MIMO antennas. Electron. Lett. 2017, 53, 644–646. [Google Scholar] [CrossRef]
- Milias, C.; Andersen, R.B.; Lazaridis, P.I.; Zaharis, Z.D.; Muhammad, B.; Kristensen, J.T.; Mihovska, A.; Hermansen, D.D. Miniaturized Multiband Metamaterial Antennas with Dual-Band Isolation Enhancement. IEEE Access 2022, 10, 64952–64964. [Google Scholar] [CrossRef]
- Smith, D.; Vier, D.; Koschny, T.; Soukoulis, C. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 2005, 71, 036617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Yang, H.; Zhang, Q.; Deng, M. A compact antipodal tapered slot antenna with artificial material lens and reflector for GPR applications. IEEE Access 2018, 6, 44244–44251. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Z.; Zhao, X.; Guo, L.; Guo, M. Ultra-wideband and high gain antipodal tapered slot antenna with planar metamaterial lens. Int. J. Microw. Wirel. Technol. 2022, 14, 641–651. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, W.; Liu, F.; Ohira, M. A novel 10 MHz–4 GHz Wilkinson power divider using lumped compensation elements. IEICE Electron. Express 2022, 19, 20210465. [Google Scholar] [CrossRef]
- Sun, H.H.; Lee, Y.H.; Yücel, A.C.; Ow, G.; Yusof, M.L.M. Compact Dual-Polarized Vivaldi Antenna for Ground Penetrating Radar (GPR) Application. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 5–10 July 2020; pp. 25–26. [Google Scholar]
- Guo, J.; Tong, J.; Zhao, Q.; Jiao, J.; Huo, J.; Ma, C. An ultrawide band antipodal Vivaldi antenna for airborne GPR application. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1560–1564. [Google Scholar] [CrossRef]
- Plettemeier, D.; Balling, S.; Benedix, W.S.; Ciarletti, V.; Hamran, S.E.; Corbel, C.; Linke, S. Ultra light-weight antenna system for full polarimetric GPR applications. In Proceedings of the IEEE EUROCON 2009, St. Petersburg, Russia, 18–23 May 2009; pp. 1557–1564. [Google Scholar]
Paramters | H1 | H2 | H3 | L1 | L2 | L3 | Ls | d | W1 | W2 | W3 | F1 | F2 | F3 | Rf |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Values | 300 | 200 | 7 | 237.6 | 100 | 25 | 15 | 28 | 4 | 2.3 | 1.2 | 20 | 15 | 37 | 21 |
Paramters | D1 | D2 | W | dW |
---|---|---|---|---|
Values | 2 | 6 | 14 | 10 |
Refs. | Freq (GHz) | Size (mm) | Min. Gain (dBi) | Max. Gain (dBi) |
---|---|---|---|---|
[7] | 0.8–6.0 | 2.5 | 11 | |
[10] | 2.4–15.4 | - | 11.3 | |
[10] | 2.8–16 | - | 10.4 | |
[12] | 0.4–4.0 | 4.0 | 12 | |
[14] | 3.5–5.8 | - | 12.4 | |
[15] | 3.05–11.9 | 7.87 | 9.68 | |
[24] | 0.4–2.53 | - | 11.4 | |
[25] | 0.3–2.0 | 4.4 | 11.5 | |
[26] | 0.5–3.0 | 1.0 | 8.6 | |
Proposed | 0.9–4.0 | 6.7 | 15.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, R.; Zhang, F.; Ye, S.; Fang, G. Ultra-Wideband and High-Gain Vivaldi Antenna with Artificial Electromagnetic Materials. Micromachines 2023, 14, 1329. https://doi.org/10.3390/mi14071329
Hu R, Zhang F, Ye S, Fang G. Ultra-Wideband and High-Gain Vivaldi Antenna with Artificial Electromagnetic Materials. Micromachines. 2023; 14(7):1329. https://doi.org/10.3390/mi14071329
Chicago/Turabian StyleHu, Ruiyue, Feng Zhang, Shengbo Ye, and Guangyou Fang. 2023. "Ultra-Wideband and High-Gain Vivaldi Antenna with Artificial Electromagnetic Materials" Micromachines 14, no. 7: 1329. https://doi.org/10.3390/mi14071329
APA StyleHu, R., Zhang, F., Ye, S., & Fang, G. (2023). Ultra-Wideband and High-Gain Vivaldi Antenna with Artificial Electromagnetic Materials. Micromachines, 14(7), 1329. https://doi.org/10.3390/mi14071329