A RRAM-Based True Random Number Generator with 2T1R Architecture for Hardware Security Applications
Abstract
:1. Introduction
2. Proposed TRNG Scheme
2.1. Concept of RRAM-Based TRNG and Disadvantages of 1T1R Architecture
2.2. The 2T1R RRAM-Based TRNG Scheme and Its Advantages
2.3. Randomness Verification of the 2T1R RRAM-Based TRNG
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, J.; Xu, J.; Wang, B.; Xue, X.; Huang, R.; Zhou, Q.; Wu, J.; Lin, Y. A Low Cost and High Reliability True Random Number Generator. In Proceedings of the 2015 IEEE 11th International Conference on ASIC, Chengdu, China, 3–6 November 2015. [Google Scholar]
- Yang, K.; Fick, D.; Henry, M.B.; Lee, Y.; Blaauw, D.; Sylvester, D. A 23Mb/s 23pJ/b fully synthesized true-random-number generator in 28nm and 65nm CMOS. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 9–13 February 2014. [Google Scholar]
- Huang, C.-Y.; Shen, W.C.; Tseng, Y.-H.; King, Y.-C.; Lin, C.-J. A Contact-Resistive Random-Access-Memory-Based True Random Number Generator. IEEE Electron Device Lett. 2012, 33, 1108–1110. [Google Scholar] [CrossRef]
- Wei, Z.; Katoh, Y.; Ogasahara, S.; Yoshimoto, Y.; Kawai, K.; Ikeda, Y.; Eriguchi, K.; Ohmori, K.; Yoneda, S. True random number generator using current difference based on a fractional stochastic model in 40-nm embedded ReRAM. In Proceedings of the 2016 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 3–7 December 2016. [Google Scholar]
- Brederlow, R.; Prakash, R.; Paulus, C.; Thewes, R. A low-power true random number generator using random telegraph noise of single oxide-traps. In Proceedings of the 2006 IEEE International Solid State Circuits Conference—Digest of Technical Papers, San Francisco, CA, USA, 6–9 February 2006. [Google Scholar]
- Pamula, V.R.; Sun, X.; Kim, S.; Rahman, F.U.; Zhang, B.; Sathe, V.S. An All-Digital True-Random-Number Generator with Integrated De-correlation and Bias Correction at 3.2-to-86 MB/S, 2.58 PJ/Bit in 65-NM CMOS. In Proceedings of the 2018 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 18–22 June 2018. [Google Scholar]
- Kim, M.; Ha, U.; Lee, K.J.; Lee, Y.; Yoo, H.-J. A 82-nW Chaotic Map True Random Number Generator Based on a Sub-Ranging SAR ADC. IEEE J. Solid-State Circuits 2017, 52, 1953–1965. [Google Scholar] [CrossRef]
- Kim, E.; Lee, M.; Kim, J.J. 8.2 8Mb/s 28Mb/mJ Robust True-Random-Number Generator in 65nm CMOS Based on Differential Ring Oscillator with Feedback Resistors. In Proceedings of the 2017 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 5–9 February 2017. [Google Scholar]
- Larentis, S.; Nardi, F.; Balatti, S.; Gilmer, D.C.; Ielmini, D. Resistive Switching by Voltage-Driven Ion Migration in Bipolar RRAM—Part II: Modeling. IEEE Trans. Electron Devices 2012, 59, 2468–2475. [Google Scholar] [CrossRef]
- Ambrogio, S.; Balatti, S.; Cubeta, A.; Calderoni, A.; Ramaswamy, N.; Ielmini, D. Statistical Fluctuations in HfOx Resistive-Switching Memory: Part II—Random Telegraph Noise. IEEE Trans. Electron Devices 2014, 61, 2920–2927. [Google Scholar] [CrossRef]
- Veksler, D.; Bersuker, G.; Chakrabarti, B.; Vogel, E.; Deora, S.; Matthews, K.; Gilmer, D.C.; Li, H.-F.; Gausepohl, S.; Kirsch, P.D. Methodology for the statistical evaluation of the effect of random telegraph noise (RTN) on RRAM characteristics. In Proceedings of the 2012 International Electron Devices Meeting, San Francisco, CA, USA, 10–13 December 2012. [Google Scholar]
- Gao, B.; Lin, B.; Li, X.; Tang, J.; Qian, H.; Wu, H. A Unified PUF and TRNG Design Based on 40-nm RRAM With High Entropy and Robustness for IoT Security. IEEE Trans. Electron Devices 2022, 69, 536–542. [Google Scholar] [CrossRef]
- Yuan, F.; Li, S.; Deng, Y.; Li, Y.; Chen, G. Cu-Doped TiO2−x Nanoscale Memristive Applications in Chaotic Circuit and True Random Number Generator. IEEE Trans. Ind. Electron. 2023, 70, 4120–4127. [Google Scholar] [CrossRef]
- Song, M.; Kim, T.; Hwang, H.; Ahn, S.; Nili, H.; Kim, H. Optimization of Random Telegraph Noise Characteristics in Memristor for True Random Number Generator. Adv. Intell. Syst. 2023, 5, 2200358. [Google Scholar] [CrossRef]
- Sachin, T.; Viveka Konandur, R.; Alioto, M. In-Memory Unified TRNG and Multi-Bit PUF for Ubiquitous Hardware Security. IEEE J. Solid-State Circuits 2022, 57, 153–166. [Google Scholar]
- Iluminada, B.; Román, R.; Corbacho, Á. A Unified Multibit PUF and TRNG Based on Ring Oscillators for Secure IoT Devices. IEEE Internet Things J. 2023, 10, 6182–6192. [Google Scholar]
- Chen, A. Utilizing the Variability of Resistive Random Access Memory to Implement Reconfigurable Physical Unclonable Functions. IEEE Electron Device Lett. 2015, 36, 138–140. [Google Scholar] [CrossRef]
- Liu, R.; Wu, H.; Pang, Y.; Qian, H.; Yu, S. Experimental Characterization of Physical Unclonable Function Based on 1 kb Resistive Random Access Memory Arrays. IEEE Electron Device Lett. 2015, 36, 1380–1383. [Google Scholar] [CrossRef]
- Jiang, Z.; Yu, S.; Wu, Y.; Engel, J.H.; Guan, X.; Wong, H.S.P. Verilog-A Compact Model for Oxide-based Resistive Random Access Memory. In Proceedings of the 2014 International Conference on Simulation of Semiconductor Processes and Devices, Yokohama, Japan, 9–11 September 2014. [Google Scholar]
- Guan, X.; Yu, S.; Wong, H.-S.P. A SPICE Compact Model of Metal Oxide Resistive Switching Memory with Variations. IEEE Electron Device Lett. 2012, 33, 1405–1407. [Google Scholar] [CrossRef]
- Yang, J.; Xue, X.; Xu, X.; Lv, H.; Zhang, F.; Zeng, X.; Chang, M.-F.; Liu, M. A 28nm 1.5Mb Embedded 1T2R RRAM with 14.8 Mb/mm2 using Sneaking Current Suppression and Compensation Techniques. In Proceedings of the 2020 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 16–19 June 2020. [Google Scholar]
- Ye, W.; Dou, C.; Wang, L.; Zhou, Z.; An, J.; Li, W.; Gao, H.; Xu, X.; Yue, J.; Yang, J.; et al. A 28nm Hybrid 2T1R RRAM Computing-in-Memory Macro for Energy-efficient AI Edge Inference. In Proceedings of the 2022 IEEE Asian Solid-State Circuits Conference, Taipei, Taiwan, 6–9 November 2022. [Google Scholar]
- Lee, H.Y.; Chen, Y.S.; Gu, P.Y.; Hsu, Y.Y.; Wang, S.M.; Liu, W.H.; Tsai, C.H.; Sheu, S.S.; Chiang, P.C.; Lin, W.P.; et al. Evidence and solution of over-RESET problem for HfOx based resistive memory with sub-ns switching speed and high endurance. In Proceedings of the 2010 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010. [Google Scholar]
- Wang, L.; Ye, W.; Lai, J.; Liu, J.; Yang, J.; Si, X.; Huo, C.; Dou, C.; Xu, X.; Liu, Q.; et al. A 14nm 100Kb 2T1R Transpose RRAM with >150X resistance ratio enhancement and 27.95% reduction on energy-latency product using low-power near threshold read operation and fast data-line current stabling scheme. In Proceedings of the 2021 IEEE Symposium on VLSI Technology, Digest of Technical Papers, Kyoto, Japan, 13–19 June 2021. [Google Scholar]
PVT | Power Consumption | Response Speed |
---|---|---|
TT/1.8 V/25 °C | 17.53 μW | 15 ns |
SS/1.8 V/−40 °C | 15.61 μW | 10 ns |
FF/1.8 V/85 °C | 18.89 μW | 13 ns |
TT/1.98 V/25 °C | 19.91 μW | 17 ns |
SS/1.98 V/−40°C | 17.79 μW | 16 ns |
FF/1.98 V/85 °C | 21.41 μW | 18 ns |
TT/1.62 V/25 °C | 15.25 μW | 15 ns |
SS/1.62 V/−40 °C | 13.52 μW | 10 ns |
FF/1.62 V/85 °C | 16.46 μW | 12 ns |
TRNG | This Work | Ref. [12] | Ref. [13] | Ref. [14] |
---|---|---|---|---|
Entropy source | RRAM | RRAM | Chaotic map | RTN |
Unified functions | TRNG | PUF + TRNG | TRNG | TRNG |
Error bit correction | Yes | No | No | No |
Suppression noise | Yes | Yes | No | Yes |
Readout circuit | Yes | Yes | Yes | Yes |
Supply voltage (V) | 1.62–1.98 | 0.9–1.3 | 0.8–1.0 | 1.0–1.5 |
Temperature (°C) | −40–85 | −55–125 | 25 | 25 |
TRNG energy (fj/bit) | 1750 | 1983 | NA | NA |
Max throughout (Mbps) | 10 | 1.5 | 12.5 | 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, B.; Wu, Q.; Wang, Z.; Yang, J. A RRAM-Based True Random Number Generator with 2T1R Architecture for Hardware Security Applications. Micromachines 2023, 14, 1213. https://doi.org/10.3390/mi14061213
Peng B, Wu Q, Wang Z, Yang J. A RRAM-Based True Random Number Generator with 2T1R Architecture for Hardware Security Applications. Micromachines. 2023; 14(6):1213. https://doi.org/10.3390/mi14061213
Chicago/Turabian StylePeng, Bo, Qiqiao Wu, Zhongqiang Wang, and Jianguo Yang. 2023. "A RRAM-Based True Random Number Generator with 2T1R Architecture for Hardware Security Applications" Micromachines 14, no. 6: 1213. https://doi.org/10.3390/mi14061213
APA StylePeng, B., Wu, Q., Wang, Z., & Yang, J. (2023). A RRAM-Based True Random Number Generator with 2T1R Architecture for Hardware Security Applications. Micromachines, 14(6), 1213. https://doi.org/10.3390/mi14061213