Depth-Enhanced Holographic Super Multi-View Maxwellian Display Based on Variable Filter Aperture
Abstract
1. Introduction
2. The Limited DOF for Conventional SMV Maxwellian Display
3. Variable Filter Aperture for SMV Maxwellian Display
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, D.; Wang, Q.; Liu, Y.; Chen, H.; Ni, D.; Wang, X.; Yao, C.; Hou, Q.; Hou, W.; Luo, G.; et al. Design and manufacture AR head-mounted displays: A review and outlook. Light Adv. Manuf. 2021, 2, 350–369. [Google Scholar] [CrossRef]
- Xiong, J.; Hsiang, E.L.; He, Z.; Zhan, T.; Wu, S.T. Augmented reality and virtual reality displays: Emerging technologies and future perspectives. Light Sci. Appl. 2021, 10, 216. [Google Scholar] [CrossRef]
- Chang, C.; Bang, K.; Wetzstein, G.; Lee, B.; Gao, L. Toward the next-generation VR/AR optics: A review of holographic near-eye displays from a human-centric perspective. Optica 2020, 7, 1563–1578. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, J.; Fang, F. Vergence-accommodation conflict in optical see-through display: Review and prospect. Results Opt. 2021, 5, 100160. [Google Scholar] [CrossRef]
- Zhang, H.L.; Deng, H.; Li, J.J.; He, M.Y.; Li, D.H.; Wang, Q.H. Integral imaging-based 2D/3D convertible display system by using holographic optical element and polymer dispersed liquid crystal. Opt. Lett. 2019, 44, 387–390. [Google Scholar] [CrossRef]
- Lanman, D.; Luebke, D. Near-eye light field displays. ACM Trans. Graph. 2013, 32, 1–10. [Google Scholar] [CrossRef]
- Huang, H.; Hua, H. High-performance integral-imaging-based light field augmented reality display using freeform optics. Opt. Express 2018, 26, 17578–17590. [Google Scholar] [CrossRef]
- Li, Q.; Zhong, F.Y.; Deng, H.; He, W. Depth-enhanced 2D/3D switchable integral imaging display by using n-layer focusing control units. Liq. Cryst. 2022, 49, 1367–1375. [Google Scholar] [CrossRef]
- Li, Q.; He, W.; Deng, H.; Zhong, F.Y.; Chen, Y. High-performance reflection-type augmented reality 3D display using a reflective polarizer. Opt. Express 2021, 29, 9446–9453. [Google Scholar] [CrossRef]
- Sonoda, T.; Yamamoto, H.; Suyama, S. A new volumetric 3D display using multi-varifocal lens and high-speed 2D display. In Proceedings of the Stereoscopic Displays and Applications XXII, San Francisco, CA, USA, 23–27 January 2011; Volume 7863, pp. 669–677. [Google Scholar]
- Aksit, K.; Lopes, W.; Kim, J.; Shirley, P.; Luebke, D. Near-eye varifocal augmented reality display using see-through screens. ACM Trans. Graph. 2017, 36, 1–13. [Google Scholar] [CrossRef]
- Shi, X.; Xue, Z.; Ma, S.; Wang, B.; Liu, Y.; Wang, Y.; Song, W. Design of a dual focal-plane near-eye display using diffractive waveguides and multiple lenses. Appl. Opt. 2022, 61, 5844–5849. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Choi, S.; Kim, J.; Wetzstein, G. Speckle-free holography with partially coherent light sources and camera-in-the-loop calibration. Sci. Adv. 2021, 7, eabg5040. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, Z.; Zheng, Y.; Li, N.; Li, Y.; Wang, Q. High-Quality Holographic 3D Display System Based on Virtual Splicing of Spatial Light Modulator. ACS Photonics 2022. [Google Scholar] [CrossRef]
- He, Z.; Sui, X.; Jin, G.; Cao, L. Progress in virtual reality and augmented reality based on holographic display. Appl. Opt. 2019, 58, A74–A81. [Google Scholar]
- Wu, J.; Liu, K.; Sui, X.; Cao, L. High-speed computer-generated holography using an autoencoder-based deep neural network. Opt. Lett. 2021, 46, 2908–2911. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.L.; Li, N.N.; Wang, D.; Chu, F.; Lee, S.D.; Zheng, Y.W.; Wang, Q.H. Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size. Light Sci. Appl. 2022, 11, 188. [Google Scholar] [CrossRef]
- Wang, D.; Liu, C.; Shen, C.; Xing, Y.; Wang, Q.H. Holographic capture and projection system of real object based on tunable zoom lens. PhotoniX 2020, 1, 18. [Google Scholar] [CrossRef]
- Pi, D.; Liu, J.; Wang, Y. Review of computer-generated hologram algorithms for color dynamic holographic three-dimensional display. Light Sci. Appl. 2022, 11, 231. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, L.; Zhang, H.; Kong, D.; Jin, G. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method. Opt. Express 2015, 23, 25440–25449. [Google Scholar] [CrossRef]
- Liu, K.; Wu, J.; He, Z.; Cao, L. 4K-DMDNet: Diffraction model-driven network for 4K computer-generated holography. Opto-Electron. Adv. 2023, 6, 220135. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, S.; Zhao, J.; Rong, L.; Wang, Y.; Wang, D. Binocular full-color holographic three-dimensional near eye display using a single SLM. Opt. Express 2023, 31, 2552–2565. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, J.; Wu, Y.; Lei, X.; Zhang, Y. Expansion of a vertical effective viewing zone for an optical 360° holographic display. Opt. Express 2022, 30, 43037–43052. [Google Scholar] [CrossRef] [PubMed]
- Takaki, Y.; Fujimoto, N. Flexible retinal image formation by holographic Maxwellian-view display. Opt. Express 2018, 26, 22985–22999. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Cui, W.; Park, J.; Gao, L. Computational holographic Maxwellian near-eye display with an expanded eyebox. Sci. Rep. 2019, 9, 18749. [Google Scholar] [CrossRef]
- Mi, L.; Chen, C.P.; Lu, Y.; Zhang, W.; Chen, J.; Maitlo, N. Design of lensless retinal scanning display with diffractive optical element. Opt. Express 2019, 27, 20493–20507. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Lv, G.; Feng, Q.; Wang, A.; Ming, H. Conjugate wavefront encoding: An efficient eyebox extension approach for holographic Maxwellian near-eye display. Opt. Lett. 2021, 46, 5623–5626. [Google Scholar]
- Wang, Z.; Tu, K.; Pang, Y.; Lv, G.Q.; Feng, Q.B.; Wang, A.T.; Ming, H. Enlarging the FOV of lensless holographic retinal projection display with two-step Fresnel diffraction. Appl. Phys. Lett. 2022, 121, 081103. [Google Scholar] [CrossRef]
- Wang, Z.; Tu, K.; Pang, Y.; Zhang, X.; Lv, G.; Feng, Q.; Wang, A.; Ming, H. Simultaneous multi-channel near-eye display: A holographic retinal projection display with large information content. Opt. Lett. 2022, 47, 3876–3879. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Z.; Liu, J. Adjustable and continuous eyebox replication for a holographic Maxwellian near-eye display. Opt. Lett. 2022, 47, 445–448. [Google Scholar] [CrossRef]
- Wang, Z.; Tu, K.; Pang, Y.; Xu, M.; Lv, G.; Feng, Q.; Wang, A.; Ming, H. Lensless phase-only holographic retinal projection display based on the error diffusion algorithm. Opt. Express 2022, 30, 46450–46459. [Google Scholar] [CrossRef]
- Choi, M.H.; Shin, K.S.; Jang, J.; Han, W.; Park, J.H. Waveguide-type Maxwellian near-eye display using a pin-mirror holographic optical element array. Opt. Lett. 2022, 47, 405–408. [Google Scholar] [CrossRef]
- Ueno, T.; Takaki, Y. Super multi-view near-eye display to solve vergence–accommodation conflict. Opt. Express 2018, 26, 30703–30715. [Google Scholar] [CrossRef] [PubMed]
- Teng, D.; Lai, C.; Song, Q.; Yang, X.; Liu, L. Super multi-view near-eye virtual reality with directional backlights from wave-guides. Opt. Express 2023, 31, 1721–1736. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Han, J.; Ju, Y.G.; Jang, J.; Park, J.H. Super multi-view near-eye display with a lightguide combiner. Opt. Express 2022, 30, 46383–46403. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Cai, J.; Pang, Z.; Teng, D. Super multi-view near-eye 3D display with enlarged field of view. Opt. Eng. 2021, 60, 085103. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Liu, S.; Su, Y.; Teng, D. Large depth of range Maxwellian-viewing SMV near-eye display based on a Pancharatnam-Berry optical element. IEEE Photonics J. 2021, 14, 7001607. [Google Scholar] [CrossRef]
- Zhang, X.; Pang, Y.; Chen, T.; Tu, K.; Feng, Q.; Lv, G.; Wang, Z. Holographic super multi-view Maxwellian near-eye display with eyebox expansion. Opt. Lett. 2022, 47, 2530–2533. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Tu, K.; Lv, G.; Feng, Q.; Wang, A.; Ming, H. Lensless full-color holographic Maxwellian near-eye display with a horizontal eyebox expansion. Opt. Lett. 2021, 46, 4112–4115. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Lv, G.; Feng, Q.; Ming, H.; Wang, A. Hybrid holographic Maxwellian near-eye display based on spherical wave and plane wave reconstruction for augmented reality display. Opt. Express 2021, 29, 4927–4935. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, K.; Chen, Q.; Wang, Z.; Lv, G.; Feng, Q. Depth-Enhanced Holographic Super Multi-View Maxwellian Display Based on Variable Filter Aperture. Micromachines 2023, 14, 1167. https://doi.org/10.3390/mi14061167
Tu K, Chen Q, Wang Z, Lv G, Feng Q. Depth-Enhanced Holographic Super Multi-View Maxwellian Display Based on Variable Filter Aperture. Micromachines. 2023; 14(6):1167. https://doi.org/10.3390/mi14061167
Chicago/Turabian StyleTu, Kefeng, Qiyang Chen, Zi Wang, Guoqiang Lv, and Qibin Feng. 2023. "Depth-Enhanced Holographic Super Multi-View Maxwellian Display Based on Variable Filter Aperture" Micromachines 14, no. 6: 1167. https://doi.org/10.3390/mi14061167
APA StyleTu, K., Chen, Q., Wang, Z., Lv, G., & Feng, Q. (2023). Depth-Enhanced Holographic Super Multi-View Maxwellian Display Based on Variable Filter Aperture. Micromachines, 14(6), 1167. https://doi.org/10.3390/mi14061167