Micro Electro-Osmotic Thrusters of Power-Law Fluids for Space Propulsion
Abstract
:1. Introduction
2. Electrodynamic Mathematical Model
2.1. Electric Potential and Ionic Concentration Distributions
2.2. Fluid Velocity Distribution
3. Thruster Performance Analysis
3.1. Specific Impulse
3.2. Thrust
3.3. Efficiency
3.4. Thrust-to-Power Ratio
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
L | length of the channel, mm |
W | width of the channel, μm |
H | depth of the channel, μm |
Ex | Electric field strength, V m−1 |
x, y | two-dimensional coordinate components, μm, μm, respectively |
x *, y * | dimensionless two-dimensional coordinate components |
e | proton charge = 1.602 × 10−19 °C |
z | valence number of ions |
n0 | ion density, m−3 |
Kb | Boltzmann constant = 1.38 × 10−23 J K−1 |
Tav | absolute temperature of the system, K |
u | fluid velocity, m/s |
u* | dimensionless fluid velocity |
uHS | Helmholtz–Smoluchowski electro-osmotic velocity, m/s |
m | flow consistency index |
n | flow behavior index |
Isp | specific impulse of thruster, s |
Isp* | dimensionless specific impulse of thruster |
Th | thrust of thruster, N |
Th* | dimensionless thrust of thruster |
Pin | total power input, W |
Pin* | dimensionless total power input |
K | kinetic energy per unit time, W |
K* | dimensionless kinetic energy per unit time |
Pj | Joule heating effect, W |
Pj* | dimensionless Joule heating effect |
Pv | viscous dissipation, W |
Pv* | dimensionless viscous dissipation |
Pf | frictional heating, W |
Pf* | dimensionless frictional heating |
TP | thrust-to-power of thruster, N W−1 |
TP* | dimensionless thrust-to-power of thruster |
Greek symbols | |
ψ | electric potential of fluid, V |
ψ* | dimensionless electric potential of fluid |
ε0 | electric permittivity of free space, F m−1 |
εr | relative permittivity, F m−1 |
ρe | volumetric net charge density of the fluid, cm−3 |
λD | EDL thickness, μm |
κ | reciprocal of the EDL thickness, μm−1 |
κ* | dimensionless reciprocal of the EDL thickness |
ζ | electric potential at the wall, V |
μ | viscosity of the power-law fluid, kg/(ms) |
β | slip length, nm |
ρ | fluid density, kg m−3 |
σ | electrical conductivity of electrolytic propellant, S m−1 |
σ0 | electrical conductivity of the neutral liquid, S m−1 |
η | thruster efficiency, % |
References
- Mueller, J. Thruster options for microspacecraft—A review and evaluation of existing hardware and emerging technologies. In Proceedings of the 33rd Joint Propulsion Conference and Exhibit, Seattle, WA, USA, 6–9 July 1997. [Google Scholar] [CrossRef]
- De Groot, W. Propulsion Options for Primary Thrust and Attitude Control of Microspacecraft; Elsevier: Amsterdam, The Netherlands, 1999; pp. 200–209. [Google Scholar] [CrossRef]
- Wright, W.; Ferrer, P. Electric micropropulsion systems. Prog. Aerosp. Sci. 2015, 74, 48–61. [Google Scholar] [CrossRef]
- Smith, R.S.; Hadaegh, F.Y. Control of Deep-Space Formation-Flying Spacecraft; Relative Sensing and Switched Information. J. Guid. Control. Dyn. 2005, 28, 106–114. [Google Scholar] [CrossRef]
- Hwang, G.; Braive, R.; Couraud, L.; Cavanna, A.; Abdelkarim, O.; Robert-Philip, I.; Beveratos, A.; Sagnes, I.; Haliyo, S.; Régnier, S. Electro-osmotic propulsion of helical nanobelt swimmers. Int. J. Robot. Res. 2011, 30, 806–819. [Google Scholar] [CrossRef]
- Oddy, M.H.; Santiago, J.G.; Mikkelsen, J.C. Electrokinetic Instability Micromixing. Anal. Chem. 2001, 73, 5822–5832. [Google Scholar] [CrossRef]
- Chen, C.-H.; Santiago, J. A planar electroosmotic micropump. J. Microelectromechanical Syst. 2002, 11, 672–683. [Google Scholar] [CrossRef]
- Huang, H.-F.; Lai, C.-L. Enhancement of mass transport and separation of species by oscillatory electroosmotic flows. Proc. R. Soc. A: Math. Phys. Eng. Sci. 2006, 462, 2017–2038. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, C.; Wong, T.N.; Yang, C.; Nguyen, N.-T.; Ooi, K.T. Electro-osmotic control of the interface position of two-liquid flow through a microchannel. J. Micromech. Microeng. 2007, 17, 358–366. [Google Scholar] [CrossRef]
- Patel, K.D.; Bartsch, M.; McCrink, M.H.; Olsen, J.S.; Mosier, B.P.; Crocker, R.W. Electrokinetic pumping of liquid propellants for small satellite microthruster applications. Sens. Actuators B Chem. 2008, 132, 461–470. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, C.; Wang, S.; Liu, S. Electroosmotic pumps and their applications in microfluidic systems. Microfluid. Nanofluidics 2009, 6, 145–162. [Google Scholar] [CrossRef]
- Gomez, J.; Groll, R. Pressure drop and thrust predictions for transonic micronozzle flows. Phys. Fluids 2016, 28, 022008. [Google Scholar] [CrossRef]
- Manjunathan, S.A.; Bhardwaj, R. Thrust generation by pitching and heaving of an elastic plate at low Reynolds number. Phys. Fluids 2020, 32, 073601. [Google Scholar] [CrossRef]
- Diez, F.; Hernaiz, G.; Miranda, J.; Sureda, M. On the capabilities of nano electrokinetic thrusters for space propulsion. Acta Astronaut. 2013, 83, 97–107. [Google Scholar] [CrossRef]
- Huang, K.-H. Two-liquid electroosmotic thrusters for micro propulsion applications. Phys. Fluids 2019, 31, 122003. [Google Scholar] [CrossRef]
- Zheng, J.; Jian, Y. Electroosmotic thrusters in soft nanochannels for space propulsion. Phys. Fluids 2020, 32, 122005. [Google Scholar] [CrossRef]
- Zheng, J.; Jian, Y. Space Electroosmotic Thrusters in Ion Partitioning Soft Nanochannels. Micromachines 2021, 12, 777. [Google Scholar] [CrossRef]
- Berli, C.L.A.; Urteaga, R. Asymmetric capillary filling of non-Newtonian power law fluids. Microfluid. Nanofluidics 2014, 17, 1079–1084. [Google Scholar] [CrossRef]
- Dhar, J.; Ghosh, U.; Chakraborty, S. Alterations in streaming potential in presence of time periodic pressure-driven flow of a power law fluid in narrow confinements with nonelectrostatic ion-ion interactions. Electrophoresis 2013, 35, 662–669. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, W.; Yang, C. Dynamic Electroosmotic Flows of Power-Law Fluids in Rectangular Microchannels. Micromachines 2017, 8, 34. [Google Scholar] [CrossRef]
- Ng, C.-O.; Qi, C. Electroosmotic flow of a power-law fluid in a non-uniform microchannel. J. Non Newton. Fluid Mech. 2014, 208–209, 118–125. [Google Scholar] [CrossRef]
- Qi, C.; Ng, C.-O. Electroosmotic flow of a power-law fluid through an asymmetrical slit microchannel with gradually varying wall shape and wall potential. Colloids Surf. A Physicochem. Eng. Asp. 2015, 472, 26–37. [Google Scholar] [CrossRef]
- Choi, W.; Yun, S.; Choi, D.-S. Approximate Solution for Electroosmotic Flow of Power-Law Fluids in a Planar Microchannel with Asymmetric Electrochemical Boundary Conditions. Micromachines 2018, 9, 265. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zholkovskij, E.; Masliyah, J.H.; Yang, C. Analysis of electroosmotic flow of power-law fluids in a slit microchannel. J. Colloid Interface Sci. 2008, 326, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.-S.; Yun, S.; Choi, W. An Exact Solution for Power-Law Fluids in a Slit Microchannel with Different Zeta Potentials under Electroosmotic Forces. Micromachines 2018, 9, 504. [Google Scholar] [CrossRef] [PubMed]
- Shit, G.; Mondal, A.; Sinha, A.; Kundu, P. Electro-osmotic flow of power-law fluid and heat transfer in a micro-channel with effects of Joule heating and thermal radiation. Phys. A Stat. Mech. Appl. 2016, 462, 1040–1057. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhuang, Y.; Yu, H. An analytical permeability model for power-law fluids in porous fibrous media with consideration of electric double layer. Int. J. Heat Mass Transf. 2015, 91, 255–263. [Google Scholar] [CrossRef]
- Probstein, R.F. Physicochemical Hydrodynamics: An Introduction; Elsevier: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Nguyen, N.T.; Wereley, S.T. Fundamentals and Applications of Microfluidics; Artech House: Fitchburg, MA, USA, 2002. [Google Scholar]
- Sutton, G.P.; Biblarz, O. Rocket Propulsion Elements; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Goebel, D.M.; Katz, I. Fundamentals of Electric Propulsion: Ion and Hall Thrusters; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Maslen, S.H. On Heat Transfer in Slip Flow. J. Aerosp. Sci. 1958, 25, 400–401. [Google Scholar] [CrossRef]
- Morgan, H.; Green, N.G. AC Electrokinetics: Colloids and Nanoparticles; Microtechnologies and Microsystems Series; Research Studies Press: Philadelphia, PA, USA, 2003. [Google Scholar]
- Su, B.; Eugster, N.; Girault, H. Simulations of the adsorption of ionic species at polarisable liquid∣liquid interfaces. J. Electroanal. Chem. 2005, 577, 187–196. [Google Scholar] [CrossRef]
- Hong, C.; Asako, Y. Some considerations on thermal boundary condition of slip flow. Int. J. Heat Mass Transf. 2010, 53, 3075–3079. [Google Scholar] [CrossRef]
- Lee, C.; Choi, C.-H.; Kim, C.-J. Structured Surfaces for a Giant Liquid Slip. Phys. Rev. Lett. 2008, 101, 064501. [Google Scholar] [CrossRef]
Symbol | Description | Value | Units | References |
---|---|---|---|---|
L | thruster length | 1 | mm | [15,29,30,31] |
W | thruster depth | 500 | μm | [15,29,30,31] |
H | half channel height of the thruster | 50 | μm | [15,29,30,31] |
ρ | density of the fluid | 1060 | kg m−3 | [26] |
ε0 | permittivity of free space | 8.854 × 10−12 | F m−1 | [16] |
εr | relative permittivity | 78.36 | F m−1 | [16] |
σ0 | electrical conductivity of the fluid | 10−3 | S m−1 | [26] |
z | valence number of ions | 1 | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Wang, J.; Jian, Y. Micro Electro-Osmotic Thrusters of Power-Law Fluids for Space Propulsion. Micromachines 2023, 14, 949. https://doi.org/10.3390/mi14050949
Zheng J, Wang J, Jian Y. Micro Electro-Osmotic Thrusters of Power-Law Fluids for Space Propulsion. Micromachines. 2023; 14(5):949. https://doi.org/10.3390/mi14050949
Chicago/Turabian StyleZheng, Jiaxuan, Jialu Wang, and Yongjun Jian. 2023. "Micro Electro-Osmotic Thrusters of Power-Law Fluids for Space Propulsion" Micromachines 14, no. 5: 949. https://doi.org/10.3390/mi14050949
APA StyleZheng, J., Wang, J., & Jian, Y. (2023). Micro Electro-Osmotic Thrusters of Power-Law Fluids for Space Propulsion. Micromachines, 14(5), 949. https://doi.org/10.3390/mi14050949