A Review of Photonic Sensors Based on Ring Resonator Structures: Three Widely Used Platforms and Implications of Sensing Applications
Abstract
1. Introduction
2. Working Principle of RR Structure
3. WG Structures versus Sensitivity versus Fabrication Complexity
4. RR Sensors Based on Different Platforms and Potential Applications
4.1. Silicon-on-Insulatorplatform
4.2. Polymer Platform
4.3. Plasmonic Platform
5. Limiting Factors of RR Devices
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Sumetsky. Optimization of optical ring resonator devices for sensing applications. Opt. Lett. 2007, 32, 2577–2579. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Subwavelength grating double slot waveguide racetrack ring resonator for refractive index sensing application. Sensors 2020, 20, 3416. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. A multichannel metallic dual nano-wall square split-ring resonator: Design analysis and applications. Laser Phys. Lett. 2019, 16, 126201. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Highly sensitive refractive index sensor based on hybrid plasmonic waveguide microring resonator. Waves Random Complex Media 2020, 30, 292–299. [Google Scholar] [CrossRef]
- Carlborg, C.F.; Gylfason, K.B.; Kaźmierczak, A.; Dortu, F.; Polo, M.J.B.; Catala, A.M.; Kresbach, G.M.; Sohlström, H.; Moh, T.; Vivien, L.; et al. A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips. Lab Chip 2010, 10, 281–290. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Alipour-Banaei, H.; Serajmohammadi, S.; Mehdizadeh, F. All optical NOR and NAND gate based on nonlinear photonic crystal ring resonators. Optik 2014, 125, 5701–5704. [Google Scholar] [CrossRef]
- Claes, T.; Molera, J.G.; De Vos, K.; Schacht, E.; Baets, R.; Bienstman, P. Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator. IEEE Photonics J. 2009, 1, 197–204. [Google Scholar] [CrossRef]
- Kaplan, A.; Bassi, P.; Bellanca, G. Tunable narrow band optical reflector based on indirectly coupled micro ring resonators. Opt. Express 2020, 28, 13497–13515. [Google Scholar] [CrossRef] [PubMed]
- Sacher, W.; Poon, J. Dynamics of microring resonator modulators. Opt. Express 2008, 16, 15741–15753. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hazra, S.; Bhattacharjee, A.; Chand, M.; Salunkhe, K.; Gopalakrishnan, S.; Patankar, M.; Vijay, R. Ring-resonator-based coupling architecture for enhanced connectivity in a superconducting multiqubit network. Phys. Rev. Appl. 2021, 16, 024018. [Google Scholar] [CrossRef]
- Rickman, A. The commercialization of silicon photonics. Nat. Photonics 2014, 8, 579–582. [Google Scholar] [CrossRef]
- Janeiro, R.; Flores, R.; Viegas, J. Silicon photonics waveguide array sensor for selective detection of VOCs at room temperature. Sci. Rep. 2019, 9, 17099. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Butt, M.; Khonina, S.; Kazanskiy, N. Optical elements based on silicon photonics. Comput. Opt. 2019, 43, 1079–1083. [Google Scholar] [CrossRef]
- Rahim, A.; Goyvaerts, J.; Szelag, B.; Fedeli, J.-M.; Absil, P.; Aalto, T.; Harjanne, M.; Littlejohns, C.G.; Reed, G.T.; Winzer, G.; et al. Open-Access Silicon Photonics Platforms in Europe. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–18. [Google Scholar] [CrossRef][Green Version]
- Reed, G.; Headley, W.; Png, C. Silicon photonics: The early years. Proc. SPIE 2005, 5730, 596921. [Google Scholar] [CrossRef]
- Wang, J.; Chen, L. Low crosstalk Bragg grating/Mach-Zehnder interferometer optical add-drop multiplexer in silicon photonics. Opt. Express 2015, 23, 26450–26459. [Google Scholar] [CrossRef] [PubMed]
- Khonina, S.; Voronkov, G.; Grakhova, E.; Kazanskiy, N.; Kutluyavor, R.; Butt, M. Polymer Waveguide-Based Optical Sensors—Interest in Bio, Gas, Temperature, and Mechanical Sensing Applications. Coatings 2023, 13, 549. [Google Scholar] [CrossRef]
- Azadegan, R.; Nagarajan, P.; Yao, D.; Ellis, T. Polymer micro hot embossing for the fabrication of three-dimensional millimeter-wave components. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Charleston, SC, USA, 1–5 June 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Binfeng, Y.; Guohua, H.; Yiping, C. Polymer waveguide Bragg grating Fabry–Perot filter using a nanoimprinting technique. J. Opt. 2014, 16, 105501. [Google Scholar] [CrossRef]
- Gonzalez-Vila, A.; Debliquy, M.; Lahem, D.; Zhang, C.; Mégret, P.; Caucheteur, C. Molecularly imprinted electropolymerization on a metal-coated optical fiber for gas sensing applications. Sens. Actuators B Chem. 2017, 244, 1145–1151. [Google Scholar] [CrossRef]
- Ibrahim, M.; Kassim, N.; Mohammad, A.; Supa’at, A.; Chin, M.-K.; Lee, S.-Y. Optical cross couplers based on wet-etch processing of benzocyclobutene polymer. Opt. Mater. 2010, 32, 703–706. [Google Scholar] [CrossRef]
- Anwar, R.S.; Ning, H.; Mao, L. Recent advancements in surface plasmon polaritons-plasmonics in subwavelength structures in microwave and terahertz regimes. Digit. Commun. Networks 2018, 4, 244–257. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Plasmonics: A Necessity in the Field of Sensing-A Review (Invited). Fiber Integr. Opt. 2021, 40, 14–47. [Google Scholar] [CrossRef]
- SOI Wafers – Silicon-On-Insulator Line. Available online: https://www.okmetic.com/silicon-wafers/soi-wafers-silicon-on-insulator-line/ (accessed on 16 April 2023).
- Polymer Substrates & Foils. Available online: https://www.microfluidic-chipshop.com/catalogue/polymer-substrates-foils/ (accessed on 15 April 2023).
- Ultra-Thin Superlattices from Gold Nanoparticles for Nanophotonics. Available online: https://phys.org/news/2019-05-ultra-thin-superlattices-gold-nanoparticles-nanophotonics.html (accessed on 10 April 2023).
- Gardes, F.; Brimont, A.; Sanchis, P.; Rasigade, G.; Marris-Morini, D.; O’Faolain, L.; Dong, F.; Fedeli, J.; Dumon, P.; Vivien, L.; et al. High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode. Opt. Express 2009, 17, 21986–21991. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ling, T.; Chen, S.-L.; Guo, L. Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging. ACS Photonics 2014, 1, 1093–1098. [Google Scholar] [CrossRef]
- Khonina, S.; Kazanskiy, N.; Butt, M.; Kaźmierczak, A.; Piramidowicz, R. Plasmonic sensor based on metal-insulator-metal waveguide square ring cavity filled with functional material for the detection of CO2 gas. Opt. Express 2021, 29, 16584–16594. [Google Scholar] [CrossRef]
- Method May Help Myeloma Patients Avoid Painful Biopsies. Available online: https://news.mit.edu/2017/myeloma-patients-biopsies-plasma-cells-blood-bone-marrow-0404 (accessed on 8 April 2023).
- Global Warming. Available online: https://www.wonderworksonline.com/science-library/atmosphere-climate/global-warming/ (accessed on 5 April 2023).
- Global Warming. Available online: https://education.nationalgeographic.org/resource/global-warming/ (accessed on 20 April 2023).
- Luo, R.; Jiang, H.; Liang, H.; Chen, Y.; Lin, Q. Self-referenced temperature sensing with a lithium niobate microdisk resonator. Opt. Lett. 2017, 42, 1281–1284. [Google Scholar] [CrossRef]
- Tan, S.; Wang, S.; Saraf, S.; Lipa, J. Pico-Kelvin thermometry and temperature stabilization using a resonant optical cavity. Opt. Express 2017, 25, 3578–3593. [Google Scholar] [CrossRef]
- Lim, J.; Liang, W.; Savchenkov, A.; Matsko, A.; Maleki, L.; Wong, C. Probing 10 μK stability and residual drifts in the cross-polarized dual-mode stabilization of single-crystal ultrahigh-Q optical resonators. Light Sci. Appl. 2019, 8, 1. [Google Scholar] [CrossRef]
- Loh, W.; Stuart, J.; Reens, D.; Bruzewicz, C.; Braje, D.; Chiaverini, J.; Juodawlkis, P.; Sage, J.; McConnell, R. Operation of an optical atomic clock with a Brillouin laser subsystem. Nature 2020, 588, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Weng, W.; Light, P.; Luiten, A. Ultra-sensitive lithium niobate thermometer based on a dual-resonant whispering-gallery-mode cavity. Opt. Lett. 2018, 43, 1415–1418. [Google Scholar] [CrossRef]
- Fescenko, I.; Alnis, J.; Schliesser, A.; Wang, C.; Kippenberg, T.; Hänsch, T. Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator. Opt. Express 2012, 20, 19185–19193. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Harrington, M.; Isichenko, A.; Liu, K.; Behunin, R.; Papp, S.; Rakich, P.; Hoyt, C.; Fertig, C.; Blumenthal, D. Integrated reference cavity with dual-mode optical thermometry for frequency correction. Optica 2021, 8, 1481–1487. [Google Scholar] [CrossRef]
- An, P.; Kovalyuk, V.; Golikov, A.; Zubkova, E.; Ferrari, S.; Korneev, A.; Pernice, W.; Goltsman, G. Experimental optimisation of O-ring resonator Q-factor for on-chip spontaneous four wave mixing. IOP Conf. Ser. J. Phys. Conf. Ser. 2018, 1124, 051047. [Google Scholar] [CrossRef]
- Dai, X.; Mihailov, S.; Callender, C.; Blanchetière, C.; Walker, R. Ridge-waveguide-based polarization insensitive Bragg grating refractometer. Meas. Sci. Technol. 2006, 17, 1752–1756. [Google Scholar] [CrossRef]
- Rickman, A.; Reed, G.; Namavar, F. Silicon-on-insulator optical rib waveguide loss and mode characteristics. J. Light. Technol. 1994, 12, 1771–1776. [Google Scholar] [CrossRef]
- Chakravarty, S.; Lai, W.-C.; Wang, X.; Lin, C.; Chen, R.T. Photonic crystal slot waveguide spectrometer for the detection of methane. In Integrated Optics: Devices, Materials, and Technologies XV; SPIE: San Francisco, CA, USA, 2011; Volume 7941. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Modelling of rib channel waveguides based on silicon-on-sapphire at 4.67 μm wavelength for evanescent field gas absorption sensor. Optik 2018, 168, 692–697. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Butt, M. Evanescent Field Ratio Enhancement of a Modified Ridge Waveguide Structure for Methane Gas Sensing Application. IEEE Sens. J. 2020, 20, 8469–8476. [Google Scholar] [CrossRef]
- Badri, S.H. Transmission resonances in silicon subwavelength grating slot waveguide with functional host material for sensing applications. Opt. Laser Technol. 2021, 136, 106776. [Google Scholar] [CrossRef]
- Heinsalu, S.; Isogai, Y.; Matsushima, Y.; Ishikawa, H.; Utaka, K. Record-high sensitivity compact multi-slot sub-wavelength Bragg grating refractive index sensor on SOI platform. Opt. Express 2020, 28, 28126–28139. [Google Scholar] [CrossRef]
- Butt, M.; Khonina, S.; Kazanskiy, N. Recent advances in photonic crystal optical devices: A review. Opt. Laser Technol. 2021, 142, 107265. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. A highly sensitive design of subwavelength grating double-slot waveguide microring resonator. Laser Phys. Lett. 2020, 17, 076201. [Google Scholar] [CrossRef]
- Kumari, S.; Tripathi, S. Hybrid Plasmonic SOI Ring Resonator for Bulk and Affinity Bio—Sensing Applications. Silicon 2022, 14, 11577–11586. [Google Scholar] [CrossRef]
- Ferrera, M.; Park, Y.; Razzari, L.; Little, B.E.; Chu, S.T.; Morandotti, R.; Moss, D.J.; Azaña, J. On-chip CMOS-compatible all-optical integrator. Nat. Commun. 2010, 1, 29. [Google Scholar] [CrossRef][Green Version]
- Bogaerts, W.; Baets, R.; Dumon, P.; Wiaux, V.; Beckx, S.; Taillaert, D.; Luyssaert, B.; Van Campenhout, J.; Bienstman, P.; Van Thourhout, D. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Light. Technol. 2005, 23, 401–412. [Google Scholar] [CrossRef][Green Version]
- Xing, P.; Viegas, J. Broadband CMOS-compatible SOI temperature insensitive Mach-Zehnder interferometer. Opt. Express 2015, 23, 24098–24107. [Google Scholar] [CrossRef]
- Broers, A.; Hoole, A.; Ryan, J. Electron beam lithography- Resolution limits. Microelectron. Eng. 1996, 32, 131–142. [Google Scholar] [CrossRef]
- Westerveld, W.J.; Hassan, M.M.U.; Shnaiderman, R.; Ntziachristos, V.; Rottenberg, X.; Severi, S.; Rochus, V. Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics. Nat. Photonics 2021, 15, 341–345. [Google Scholar] [CrossRef]
- Dhote, C.; Singh, A.; Kumar, S. Silicon Photonics Sensors for Biophotonic Applications—A Review. IEEE Sens. J. 2022, 22, 18228–18239. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Device performance of standard strip, slot and hybrid plasmonic micro-ring resonator: A comparative study. Waves Random Complex Media 2020, 31, 2397–2406. [Google Scholar] [CrossRef]
- Fan, G.; Balciunas, T.; Kanai, T.; Flory, T.; Andriukaitis, G.; Schmidt, B.; Legare, F.; Baltuska, A. Hollow-core-waveguide compression of multi-millijoule CEP-stable 3.2 μm pulses. Optica 2016, 3, 1308–1311. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor. J. Mod. Opt. 2018, 65, 174–178. [Google Scholar] [CrossRef]
- Hiltunen, M.; Hiltunen, J.; Stenberg, P.; Aikio, S.; Kurki, L.; Vahimaa, P.; Karioja, P. Polymeric slot waveguide interferometer for sensor applications. Opt. Express 2014, 22, 7229–7237. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Elezzabi, A.; Van, V. Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform. Opt. Lett. 2010, 35, 502–504. [Google Scholar] [CrossRef]
- Huang, W.; Luo, Y.; Zhang, W.; Li, C.; Li, L.; Yang, Z.; Xu, P. High-sensitivity refractive index sensor based on Ge–Sb–Se chalcogenide microring resonator. Infrared Phys. Technol. 2021, 116, 103792. [Google Scholar] [CrossRef]
- Wu, N.; Xia, L. Side-Mode Suppressed Filter Based on Anangular Grating-Subwavelength Grating Microring Resonator with High Flexibility in Wavelength Design. Appl. Opt. 2019, 58, 7174–7180. [Google Scholar] [CrossRef]
- Xie, W.; Komljenovic, T.; Huang, J.; Tran, M.; Davenport, M.; Torres, A.; Pintus, P.; Bowers, J. Heterogeneous silicon photonics sensing for autonomous cars. Opt. Express 2019, 27, 3642–3663. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.; Malhouitre, S.; Gradkowski, K.; Morrissey, P.; O’Brien, P.; Caillaud, C.; Vaissiere, N. III-V-on-Silicon Integration: From Hybrid Devices to Heterogeneous Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 6100213. [Google Scholar] [CrossRef]
- Van der Tol, J.; Jiao, Y.; Van Engelen, J.; Pogoretskiy, V.; Kashi, A.; Williams, K. InP Membrane on Silicon (IMOS) Photonics. IEEE J. Quantum Electron. 2019, 56, 1–7. [Google Scholar] [CrossRef]
- Kim, H.-T.; Yu, M. Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range. Opt. Express 2016, 24, 9501–9510. [Google Scholar] [CrossRef]
- Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059–2062. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hagino, H.; Takahashi, Y.; Tanaka, Y.; Asano, T.; Noda, S. Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities. Phys. Rev. B 2009, 79, 085112. [Google Scholar] [CrossRef]
- Butt, M.A.; Kazanskiy, N.L. Two-dimensional photonic crystal heterostructure for light steering and TM-polarization maintaining applications. Laser Phys. 2021, 31, 036201. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Butt, M.A.; Khonina, S.N. 2D-Heterostructure photonic crystal formation for on-chip polarization division multiplexing. Photonics 2021, 8, 313. [Google Scholar] [CrossRef]
- Lo, S.; Hu, S.; Gaur, G.; Kostoulas, Y.; Weiss, S.; Fauchet, P. Photonic crystal microring resonator for label-free biosensing. Opt. Express 2017, 25, 7046–7054. [Google Scholar] [CrossRef][Green Version]
- Yang, W.; Conkey, D.; Wu, B.; Yin, D.; Hawkins, A.; Schmidt, H. Atomic spectroscopy on a chip. Nat. Photonics 2007, 1, 331–335. [Google Scholar] [CrossRef]
- Barrios, C.; Gylfason, K.; Sánchez, B.; Griol, A.; Sohlström, H.; Holgado, M.; Casquel, R. Slot-waveguide biochemical sensor. Opt. Lett. 2007, 32, 3080–3082. [Google Scholar] [CrossRef]
- Robinson, J.; Chen, L.; Lipson, M. On-chip gas detection in silicon optical microcavities. Opt. Express 2008, 16, 4296–4301. [Google Scholar] [CrossRef]
- Xu, P.; Zheng, J.; Zhou, J.; Chen, Y.; Zou, C.; Majumdar, A. Multi-slot photonic crystal cavities for high-sensitivity refractive index sensing. Opt. Express 2019, 27, 3609–3616. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Ultrashort inverted tapered silicon ridge-to-slot waveguide coupler at 1.55 microns and 3.392 microns wavelength. Appl. Opt. 2020, 59, 7821–7828. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, G.; Hu, S.; Weiss, S. Porous silicon ring resonator for compact, high sensitivity biosensing applications. Opt. Express 2015, 23, 7111–7119. [Google Scholar] [CrossRef][Green Version]
- Butt, M.A.; Kazanskiy, N.L.; Khonina, S.N. Modal characteristics of refractive index engineered hybrid plasmonic waveguide. IEEE Sens. J. 2020, 20, 9779–9786. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Sensitivity enhancement of silicon strip waveguide ring resonator by incorporating a thin metal film. IEEE Sens. J. 2019, 20, 1355–1362. [Google Scholar] [CrossRef]
- Kim, G.-D.; Lee, H.-S.; Park, C.-H.; Lee, S.-S.; Lim, B.; Bae, H.; Lee, W.-G. Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process. Opt. Express 2010, 18, 22215–22221. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Feng, X.; Liedberg, B.; Liu, A. Gas Sensor for volatile organic compounds detection using silicon photonic ring resonator. Procedia Eng. 2016, 168, 1771–1774. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, G.; Chen, D. Silicon hybrid plasmonic microring resonator for sensing applications. Appl. Opt. 2015, 54, 7131–7134. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Sang, C.; Wu, X.; Cai, J.; Wang, J. Grating double-slot micro-ring resonator for sensing. Opt. Commun. 2021, 499, 127280. [Google Scholar] [CrossRef]
- Butt, M. Thin-film coating methods: A successful marriage of high-quality and cost-effectiveness—A brief exploration. Coatings 2022, 12, 1115. [Google Scholar] [CrossRef]
- Choi, C.-G.; Kim, J.-T.; Jeong, M.-Y. Fabrication of optical waveguides in thermosetting polymers using hot embossing. In Integrated Photonics Research; Optica Publishing Group: Washington, DC, USA, 2003; p. ITuH6. [Google Scholar] [CrossRef]
- Rezem, M.; Günther, A.; Rahlves, M.; Roth, B.; Reithmeier, E. Hot embossing of polymer optical waveguides for sensing applications. Procedia Technol. 2014, 15, 514–520. [Google Scholar] [CrossRef][Green Version]
- Zheng, L.; Keppler, N.; Zhang, H.; Behrens, P.; Roth, B. Planar polymer optical waveguide with metal-organic framework coating for carbon dioxide sensing. Adv. Mater. Technol. 2022, 7, 2200395. [Google Scholar] [CrossRef]
- Aldada, L.; Shacklette, L. Advances in polymer integrated optics. IEEE J. Sel. Top. Quant. 2000, 6, 54–68. [Google Scholar] [CrossRef]
- Honda, W.; Harada, S.; Arie, T.; Akita, S.; Takei, K. Printed wearable temperature sensor for health monitoring. In Proceedings of the IEEE SENSORS 2014 Proceedings, Valencia, Spain, 2–5 November 2014; pp. 2227–2229. [Google Scholar]
- Kazanskiy, N.; Butt, M.; Khonina, S. Recent advances in wearable optical sensor automation powered by battery versus skin-like battery-free devices for personal healthcare—A review. Nanomaterials 2022, 12, 334. [Google Scholar] [CrossRef]
- Dangel, R.; Hofrichter, J.; Horst, F.; Jubin, D.; Porta, A.; Meier, N.; Soganci, I.; Weiss, J.; Offrein, B. Polymer waveguides for electro-optical integration in data centers and high-performance computers. Opt. Express 2015, 23, 4736–4750. [Google Scholar] [CrossRef]
- Prajzler, V.; Chlupaty, V.; Kulha, P.; Neruda, M.; Kopp, S.; Mujlberger, M. Optical Polymer Waveguides Fabricated by Roll-to-Plate Nanoimprinting Technique. Nanomaterials 2021, 11, 724. [Google Scholar] [CrossRef]
- Butt, M.; Kazanskiy, N.; Khonina, S. Advances in Waveguide Bragg Grating Structures, Platforms, and Applications: An Up-to-Date Appraisal. Biosensors 2022, 12, 497. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Yang, S.; Shi, R.; Fu, Y.; Su, J.; Wu, C. Polymer waveguide coupled surface plasmon refractive index sensor: A theoretical study. Photonics Sens. 2020, 10, 353–363. [Google Scholar] [CrossRef]
- Bruck, R.; Hainberger, R. Polymer waveguide based biosensor. In Photonics, Devices, and Systems IV, Proc. of SPIE; SPIE: Bellingham, WA, USA, 2008; Volume 7138. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Zhao, P.; Wang, X.; Qu, S. High sensitive temperature sensor based on a polymer waveguide integrated in an optical fibre micro-cavity. J. Opt. 2018, 20, 015801. [Google Scholar] [CrossRef]
- Hah, D.; Yoon, E.; Hong, S. An optomechanical pressure sensor using multimode interference couplers with polymer waveguides on a thin p+-Si membrane. Sensors Actuators A Phys. 2000, 79, 204–210. [Google Scholar] [CrossRef]
- Halldorsson, J.; Arnfinnsdottir, N.B.; Jonsdottir, A.B.; Agnarsson, B.; Leosson, K. High index contrast polymer waveguide platform for integrated biophotonics. Opt. Express 2010, 18, 16217–16226. [Google Scholar] [CrossRef]
- Han, X.-Y.; Wu, Z.-L.; Yang, S.-C.; Shen, F.-F.; Liang, Y.-X.; Wang, L.-H.; Wang, J.-Y.; Ren, J.; Jia, L.-Y.; Zhang, H.; et al. Recent progress of imprinted polymer photonic waveguide devices and applications. Polymers 2018, 10, 603. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nguyen, H.D.; Hollenbach, U.; Pfirrmann, S.; Ostrzinski, U.; Pfeiffer, K.; Hengsbach, S.; Mohr, J. Photo-structurable polymer for interlayer single-mode waveguide fabrication by femtosecond laser writing. Opt. Mater. 2017, 66, 110–116. [Google Scholar] [CrossRef]
- Yi, L.; Changyuan, Y. Highly strechable hybrid silica/polymer optical fiber sensors for large-strain and high-temperature application. Opt. Express 2019, 27, 20107–20116. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Hu, S.; Chamlagain, B.; Hong, T.; Zhou, Z.; Weiss, S.; Xu, Y.-Q. Visualizing light scattering in silicon waveguides with black phosphorus photodetectors. Adv. Mater. 2016, 28, 7162–7166. [Google Scholar] [CrossRef] [PubMed]
- Mirnaziry, S.; Wolff, C.; Steel, M.; Eggleton, B.; Poulton, C. Stimulated Brillouin scattering in silicon/chalcogenide slot waveguides. Opt. Express 2016, 24, 4786–4800. [Google Scholar] [CrossRef] [PubMed]
- Girault, P.; Lorrain, N.; Poffo, L.; Guendouz, M.; Lemaitre, J.; Carré, C.; Gadonna, M.; Bosc, D.; Vignaud, G. Integrated polymer micro-ring resonators for optical sensing applications. J. Appl. Phys. 2015, 117, 104504. [Google Scholar] [CrossRef][Green Version]
- Tu, X.; Chen, S.-L.; Song, C.; Huang, T.; Guo, L. Ultrahigh Q polymer microring resonators for biosensing applications. IEEE Photonics J. 2019, 11, 4200110. [Google Scholar] [CrossRef]
- Yun, S.; Park, S.; Park, B.; Kim, Y.; Park, S.; Nam, S.; Kyung, K. Polymer-waveguide-based flexible tactile sensor array for dynamic response. Adv. Mater. 2014, 26, 4474–4480. [Google Scholar] [CrossRef] [PubMed]
- Kong, M.; Li, Z.; Wu, J.; Hu, J.; Sheng, Y.; Wu, D.; Lin, Y.; Li, M.; Wang, X.; Wang, S. A wearable microfluidic device for rapid detection of HIV-1 DNA using recombinase polymerase amplification. Talanta 2019, 205, 120155. [Google Scholar] [CrossRef]
- Lotters, J.C.; Olthuis, W.; Veltink, P.H.; Bergveld, P. The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 1997, 7, 145–147. [Google Scholar] [CrossRef]
- Ren, Y.; Mormile, P.; Petti, L.; Cross, G.H. Optical waveguide humidity sensor with symmetric multilayer configuration. Sensors Actuators B: Chem. 2001, 75, 76–82. [Google Scholar] [CrossRef]
- Zhang, D.; Men, L.; Chen, Q. Femtosecond laser fabricated polymer microring resonator for sensing applications. Electron. Lett. 2018, 54, 888–890. [Google Scholar] [CrossRef]
- Sahraeibelverdi, T.; Guo, L.; Veladi, H.; Malekshahi, M. Polymer Ring Resonator with a Partially Tapered Waveguide for Biomedical Sensing: Computational Study. Sensors 2021, 21, 5017. [Google Scholar] [CrossRef]
- Serafini, M.; Mariani, F.; Gualandi, I.; Decataldo, F.; Possanzini, L.; Tessarolo, M.; Fraboni, B.; Tonelli, D.; Scavetta, E. A Wearable Electrochemical Gas Sensor for Ammonia Detection. Sensors 2021, 21, 7905. [Google Scholar] [CrossRef]
- Hansel, A.; Heck, M. Opportunities for photonic integrated circuits in optical gas sensors. J. Phys. Photonics 2020, 2, 012002. [Google Scholar] [CrossRef]
- Foreman, W.; Swaim, J.; Vollmer, F. Whispering gallery mode sensors. Adv. Opt. Photonics 2015, 7, 168–240. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Brooks, A.; Chu, X.-L.; Liu, Z.; Schott, R.; Ludwig, A.; Wieck, A.; Midolo, L.; Lodahl, P.; Rotenberg, N. Integrated whispering-gallery-mode resonator for solid-state coherent quantum photonics. Nano Lett. 2021, 21, 8707–8714. [Google Scholar] [CrossRef] [PubMed]
- Lemieux-Leduc, C.; Guertin, R.; Bianki, M.-A.; Peter, Y.-A. All-polymer whispering gallery mode resonators for gas sensing. Opt. Express 2021, 29, 8685–8697. [Google Scholar] [CrossRef]
- Butt, M.A.; Kazanskiy, N.L.; Khonina, S.N. Highly sensitive refractive index sensor based on plasmonic bow tie configuration. Photonics Sens. 2020, 10, 223–232. [Google Scholar] [CrossRef]
- Tseng, S.-Y.; Li, S.-Y.; Yi, S.-Y.; Sun, A.Y.; Gao, D.-Y.; Wan, D. Food quality monitor: Paper-based plasmonic sensors prepared through reversal nanoimprinting for rapid detection of biogenic amine odorants. ACS Appl. Mater. Interfaces 2017, 9, 17306–17316. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. A plasmonic colour filter and refractive index sensor applications based on metal-insulator-metal square micro-ring cavities. Laser Phys. 2020, 30, 016205. [Google Scholar] [CrossRef]
- Deng, Y.; Cao, G.; Yang, H. Tunable Fano resonance and high-sensitivity sensor with high figure of merit in plasmonic coupled cavities. Photonics Nanostruct. Fundam. Appl. 2018, 28, 45–51. [Google Scholar] [CrossRef]
- Hill, M.T.; Marell, M.; Leong, E.S.P.; Smalbrugge, B.; Zhu, Y.; Sun, M.; van Veldhoven, P.J.; Geluk, E.J.; Karouta, F.; Oei, Y.-S.; et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express 2009, 17, 11107–11112. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, M.; Zhang, M.; Wang, Y.; Zhao, R.; Yan, S. Fano Resonance in an Asymmetric MIM Waveguide Structure and Its Application in a Refractive Index Nanosensor. Sensors 2019, 19, 791. [Google Scholar] [CrossRef][Green Version]
- Wang, L.; Wang, L.-L.; Zeng, Y.-P.; Xiang, D.; Zhai, X.; Li, X.-F.; Huang, W.-Q. A triangular shaped channel MIM waveguide filter. J. Mod. Opt. 2012, 59, 1686–1689. [Google Scholar] [CrossRef]
- Butt, M.A. Metal-insulator-metal waveguide-based plasmonic sensors: Fantasy or truth-A critical review. Appl. Res. 2022, e202200099. [Google Scholar] [CrossRef]
- Berini, P. Long-range surface plasmon polaritons. Adv. Opt. Photonics 2009, 1, 484–588. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Xu, W. Surface plasmon polaritons: Physics and applications. J. Phys. D Appl. Phys. 2012, 45, 113001. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Z. Analytical method for metal-insulator-metal surface plasmon polaritons waveguide networks. Opt. Express 2019, 27, 303–321. [Google Scholar] [CrossRef]
- Butt, M.A.; Kazanskiy, N.L. Nanoblocks embedded in L-shaped nanocavity of a plasmonic sensor for best sensor performance. Opt. Appl. 2021, 51, 109–120. [Google Scholar] [CrossRef]
- Butt, M.; Kazanskiy, N.; Khonina, S. Tapered waveguide mode converters for metal-insulator-metal waveguide plasmonic sensors. Measurement 2023, 211, 112601. [Google Scholar] [CrossRef]
- Butt, M.; Kazanskiy, N.; Khonina, S. Highly integrated plasmonic sensor design for the simultaneous detection of multiple analytes. Curr. Appl. Phys. 2020, 20, 1274–1280. [Google Scholar] [CrossRef]
- Wen, K.; Hu, Y.; Chen, L.; Zhou, J.; Lei, L.; Guo, Z. Fano Resonance with Ultra-High Figure of Merits Based on Plasmonic Metal-Insulator-Metal Waveguide. Plasmonics 2015, 10, 27–32. [Google Scholar] [CrossRef]
- Tian, M.; Lu, P.; Chen, L.; Liu, D.; Lv, C. All-optical switching in MIM waveguide resonator with an outer portion smooth bend structure containing nonlinear optical materials. Opt. Commun. 2012, 285, 4562–4566. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, M. Refractive index sensor based on the symmetric mim waveguide structure. J. Electron. Mater. 2019, 48, 1005–1010. [Google Scholar] [CrossRef]
- Yang, X.; Hua, E.; Wang, M.; Wang, Y.; Wen, F.; Yan, S. Fano resonance in a mim waveguide with two triangle stubs coupled with a split-ring nanocavity for sensing application. Sensors 2019, 19, 4972. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yan, S.-B.; Luo, L.; Xue, C.-Y.; Zhang, Z.-D. A Refractive Index Sensor Based on a Metal-Insulator-Metal Waveguide-Coupled Ring Resonator. Sensors 2015, 15, 29183–29191. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Butt, M. Numerical Assessment of a Metal-Insulator-Metal Waveguide-Based Plasmonic Sensor System for the Recognition of Tuberculosis in Blood Plasma. Micromachines 2023, 14, 729. [Google Scholar] [CrossRef]
- Zhang, D.; Cheng, L.; Shen, Z. Formation Laws of Direction of Fano Line-Shape in a Ring MIM Plasmonic Waveguide Side-Coupled with a Rectangular Resonator and Nano-Sensing Analysis of Multiple Fano Resonances. Crystals 2021, 11, 819. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, Z.; Wang, R.; Hai, Z.; Xue, C.; Zhang, W.; Yan, S. Refractive index sensor based on fano resonances in metal-insulator-metal waveguides coupled with resonators. Sensors 2017, 17, 784. [Google Scholar] [CrossRef][Green Version]
- Yan, S.; Zhang, M.; Zhao, X.; Zhang, Y.; Wang, J.; Jin, W. Refractive Index Sensor Based on a Metal–Insulator–Metal Waveguide Coupled with a Symmetric Structure. Sensors 2017, 17, 2879. [Google Scholar] [CrossRef][Green Version]
- Jiang, M.; Qi, J.; Zhang, M.; Sun, Q.; Chen, J.; Chen, Z.; Yu, X.; Li, Y.; Tian, J. Ultra-high quality factor metallic micro-cavity based on concentric double metal-insulator-metal rings. Sci. Rep. 2017, 7, 15663. [Google Scholar] [CrossRef][Green Version]
- Chau, Y.-F.C.; Ming, T.; Chao, C.-T.; Thotagamuge, R.; Raziq, M.; Kooh, R.; Huang, H.; Lim, C.; Chiang, H.-P. Significantly enhanced coupling effect and gap plasmon resonance in a MIM-cavity based sensing structure. Sci. Rep. 2021, 11, 18515. [Google Scholar] [CrossRef]
- Liu, P.; Yan, S.; Ren, Y.; Zhang, X.; Li, T.; Wu, X.; Shen, L.; Hua, E. A MIM waveguide structure of a high-performance refractive index and temperature sensor based on fano resonance. Appl. Sci. 2021, 11, 10629. [Google Scholar] [CrossRef]
- Rahmatiyar, M.; Afsahi, M.; Danaie, M. Design of a refractive index plasmonic sensor based on a ring resonator coupled to a mim waveguide containing tapered defects. Plasmonics 2020, 15, 2169–2176. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Z.; Yan, S. Tunable fano resonance in asymmetric MIM waveguide structure. Sensors 2017, 17, 1494. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhu, J.; Lou, J. High-sensitivity Fano resonance temperature sensor in MIM waveguides coupled with a polydimethylsiloxane-sealed semi-square ring resonator. Results Phys. 2020, 18, 103183. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, H.; Sun, L.; Li, J.; Yu, C. Temperature tunable Fano resonance based on ring resonator side coupled with a MIM waveguide. Opt. Laser Technol. 2019, 116, 293–299. [Google Scholar] [CrossRef]
- Srivastava, T.; Das, R.; Jha, R. Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide. Plasmonics 2013, 8, 515–521. [Google Scholar] [CrossRef]
- Zhu, J.; Lou, J. Ultrasensitive and multifunction plasmonic temperature sensor with ethanol-sealed asymmetric ellipse resonators. Molecules 2018, 23, 2700. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kong, Y.; Wei, Q.; Liu, C.; Wang, S. Nanoscale temperature sensor based on Fano resonance in metal–insulator–metal waveguide. Opt. Commun. 2017, 384, 85–88. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, Y.; Xu, W.; Zhao, W.; He, C. A plasmonic temperature-sensing structure based on dual laterally side-coupled hexagonal cavities. Sensors 2016, 16, 706. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhang, X.; Yan, S.; Liu, J.; Ren, Y.; Zhang, Y.; Shen, L. Refractive Index Sensor Based on a Metal-Insulator-Metal Bus Waveguide Coupled with a U-Shaped Ring Resonator. Micromachines 2022, 13, 750. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Butt, M.A.; Khonina, S.N. Carbon dioxide gas sensor based on polyhexamethylene biguanide polymer deposited on silicon nano-cylinders metasurface. Sensors 2021, 21, 378. [Google Scholar] [CrossRef]
- Mi, G.; Horvath, C.; Aktary, M.; Van, V. Silicon microring refractometric sensor for atmospheric CO2 gas monitoring. Opt. Express 2016, 24, 1773–1780. [Google Scholar] [CrossRef]
- Mi, G.; Horvath, C.; Van, V. Silicon photonic dual-gas sensor for H2 and CO2 detection. Opt. Express 2017, 25, 16250–16259. [Google Scholar] [CrossRef]
- Ma, W.; Xing, J.; Wang, R.; Rong, Q.; Zhang, W.; Li, Y.; Zhang, J.; Qiao, X. Optical fiber fabry–perot interferometric CO2 gas sensor using guanidine derivative polymer functionalized layer. IEEE Sens. J. 2018, 18, 1924–1929. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A.; Kaźmierczak, A.; Piramidowicz, R. A numerical investigation of a plasmonic sensor based on a metal-insulator-metal waveguide for simultaneous detection of biological analytes and ambient temperature. Nanomaterials 2021, 11, 2551. [Google Scholar] [CrossRef] [PubMed]
- Butt, M. Plasmonic sensor realized on metal-insulator-metal waveguide configuration for refractive index detection. Photonics Lett. Pol. 2022, 14, 1–3. [Google Scholar] [CrossRef]
- Chen, J.; Lian, X.; Zhao, M.; Xie, C. Multimode Fano Resonances Sensing Based on a Non-Through MIM Waveguide with a Square Split-Ring Resonance Cavity. Biosensors 2022, 12, 306. [Google Scholar] [CrossRef] [PubMed]
- Wamg, G.; Shi, Q.; Chen, F.; Yu, Y. Gas sensor based on multiple Fano resonances in metal-insulator-metal waveguide resonator system. J. Optoelectron. Adv. Mater. 2022, 24, 323–331. [Google Scholar]
- Butt, M.; Khonina, S.; Kazanskiy, N. Simple and Improved Plasmonic Sensor Configuration Established on MIM Waveguide for Enhanced Sensing Performance. Plasmonics 2022, 17, 1305–1314. [Google Scholar] [CrossRef]
- Harhouz, A.; Hocini, A. Highly sensitive plasmonic temperature sensor based on Fano resonances in MIM waveguide coupled with defective oval resonator. Opt. Quantum Electron. 2021, 53, 439. [Google Scholar] [CrossRef]
- Khani, S.; Hayati, M. An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlattices Microstruct. 2021, 156, 106970. [Google Scholar] [CrossRef]
- Fang, Y.; Wen, K.; Li, Z.; Wu, B.; Chen, L.; Zhou, J.; Zhou, D. Multiple Fano resonances based on end-coupled semi-ring rectangular resonator. IEEE Photonics J. 2019, 11, 4801308. [Google Scholar] [CrossRef]
- McKinnon, W.; Xu, D.-X.; Storey, C.; Post, E.; Densmore, A.; Delâge, A.; Waldron, P.; Schmid, J.; Janz, S. Extracting coupling and loss coefficients from a ring resonator. Opt. Express 2009, 17, 18971–18982. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bitincka, E.; Gilardi, G.; Smit, M. On-wafer optical loss measurements using ring resonators with integrated sources and detectors. IEEE Photonics J. 2014, 6, 6601212. [Google Scholar] [CrossRef]
- Ouyang, B.; Xing, Y.; Bogaerts, W.; Caro, J. Silicon ring resonators with a free spectral range robust to fabrication variations. Opt. Express 2019, 27, 38698–38707. [Google Scholar] [CrossRef] [PubMed]
- Padmaraju, K.; Bergman, K. Resolving the thermal challenges for silicon microring resonator devices. Nanophotonics 2014, 3, 269–281. [Google Scholar] [CrossRef]
- Seyedi, M.; Descos, A.; Chen, C.-H.; Fiorentino, M.; Penkler, D.; Vincent, F.; Szelag, B.; Beausoleil, R. Crosstalk analysis of ring resonator switches for all-optical routing. Opt. Express 2016, 24, 11668–11676. [Google Scholar] [CrossRef]
WG Type | Application | Sensitivity | Q-Factor | Numerical/Experiment | Ref. |
---|---|---|---|---|---|
Ridge WG | Bio | 380 nm/RIU | 10,000 | Experiment | [78] |
SWG hybrid plasmonic WG | Bio | 1000 nm/RIU | 2569.8 | Numerical | [79] |
Metal-assisted ridge WG | Bio | 300 nm/RIU | 201.6 | Numerical | [80] |
Slotted RR | Gas | 490 nm/RIU | 5000 | Experimental | [75] |
Ridge | Temperature | 293.9 pm/°C | - | Experimental | [67] |
1D-PhC RR | Bio | 248 nm/RIU | - | Experimental | [72] |
Ridge | Temperature | 83 pm/°C | - | Experimental | [81] |
Freestanding RR | Gas | 1.7 pm/1000 ppm | 30,000 | Experimental | [82] |
Hybrid microcavity | Bio | 497 nm/RIU | 600 | Numerical | [83] |
Double slot RR | Bio | 433.33 nm/RIU | 4325 | Numerical | [84] |
Cavity Shape | Material | Application | Sensitivity | Wavelength Range (nm) | FOM | Ref. |
---|---|---|---|---|---|---|
Hexagonal | Ag | Temperature | 0.45 nm/°C | 1400–1750 | 0.013 | [151] |
Square | Au | Gas | 135.95 pm/ppm | 900–1500 | - | [29] |
Square cross | Au | Bio | 825.7 nm/RIU | 950–1450 | 13.14 | [158] |
Concentric double rings | Ag | Bio and temperature | 2260 nm/RIU and 1.48 nm/°C | 2300–3800 | 56.5 | [143] |
Square split ring | Ag | Bio | 1290.2 nm/RIU | 500–1400 | 3.6 × 104 | [159] |
Two stub and one slot resonator | Ag | Gas | 124 pm/ppm | 800–1900 | - | [160] |
Side-coupled and ring-encapsulated circular | Au | Temperature and bio | −0.58 nm/°C and −0.64 nm/°C; 1240 nm/RIU and 1350 nm/RIU | 1500–2000 | 8.6 and 1955.2 (for temperature); 18.74 and 691 (for bio) | [161] |
Defective oval | Ag | Temperature | 2.463 nm/°C | 800–3400 | 2.27 × 104 | [162] |
Elliptical | Ag | Bio | 550 nm/RIU | 500–1700 | 282.5 | [163] |
Semi-ring | Ag | Bio | 1260.5 nm/RIU | 600–1800 | 41.67 | [164] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. A Review of Photonic Sensors Based on Ring Resonator Structures: Three Widely Used Platforms and Implications of Sensing Applications. Micromachines 2023, 14, 1080. https://doi.org/10.3390/mi14051080
Kazanskiy NL, Khonina SN, Butt MA. A Review of Photonic Sensors Based on Ring Resonator Structures: Three Widely Used Platforms and Implications of Sensing Applications. Micromachines. 2023; 14(5):1080. https://doi.org/10.3390/mi14051080
Chicago/Turabian StyleKazanskiy, Nikolay L., Svetlana N. Khonina, and Muhammad A. Butt. 2023. "A Review of Photonic Sensors Based on Ring Resonator Structures: Three Widely Used Platforms and Implications of Sensing Applications" Micromachines 14, no. 5: 1080. https://doi.org/10.3390/mi14051080
APA StyleKazanskiy, N. L., Khonina, S. N., & Butt, M. A. (2023). A Review of Photonic Sensors Based on Ring Resonator Structures: Three Widely Used Platforms and Implications of Sensing Applications. Micromachines, 14(5), 1080. https://doi.org/10.3390/mi14051080