Prediction of Device Characteristics of Feedback Field-Effect Transistors Using TCAD-Augmented Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, Y.; Monga, U.; Lee, J.; Kim, M.; Park, J.; Yoo, C.; Jung, K.; Hong, S.; Kim, S.; Kim, D.; et al. The efficient DTCO compact modeling solutions to improve MHC and reduce TAT. In Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Austin, TX, USA, 24–26 September 2018; pp. 58–61. [Google Scholar]
- Kim, Y.; Myung, S.; Ryu, J.; Jeong, C.; Kim, D.S. Physics-augmented neural compact model for emerging device technologies. In Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Kobe, Japan, 23 September–6 October 2020; pp. 257–260. [Google Scholar]
- Zhang, Z.; Wang, R.; Chen, C.; Huang, Q.; Wang, Y.; Hu, C.; Wu, D.; Wang, J.; Huang, R. New-generation design-technology co-optimization (DTCO): Machine-learning assisted modeling framework. In Proceedings of the Silicon Nanoelectronics Workshop (SNW), Kyoto, Japan, 9–10 June 2019; pp. 1–2. [Google Scholar]
- Kam, H. Deep Learning Assisted Compact Modeling of Nanoscale Transistor. arXiv 2021, arXiv:2107.06167. [Google Scholar]
- Mehta, K.; Raju, S.S.; Xiao, M.; Wang, B.; Zhang, Y.; Wong, H.Y. Improvement of TCAD augmented machine learning using autoencoder for semiconductor variation identification and inverse design. IEEE Access 2020, 8, 143519–143529. [Google Scholar] [CrossRef]
- Mehta, K.; Wong, H.Y. Prediction of FinFET current-voltage and capacitance-voltage curves using machine learning with autoencoder. IEEE Electron. Dev. Lett. 2020, 42, 136–139. [Google Scholar] [CrossRef]
- Akbar, C.; Li, Y.; Sung, W.L. Deep Learning Approach to Inverse Grain Pattern of Nanosized Metal Gate for Multichannel Gate-All-Around Silicon Nanosheet MOSFETs. IEEE Trans. Semicond. Manuf. 2021, 34, 513–520. [Google Scholar] [CrossRef]
- Chen, J.; Guo, X.; Guo, Y.; Zhang, J.; Zhang, M.; Yao, Q.; Yao, J. Deep neural network-based approach for breakdown voltage and specific on-resistance prediction of SOI LDMOS with field plate. Jpn. J. Appl. Phys. 2021, 60, 077002. [Google Scholar] [CrossRef]
- Ghoshhajra, R.; Biswas, K.; Sarkar, A. A Review on Machine Learning Approaches for Predicting the Effect of Device Parameters on Performance of Nanoscale MOSFETs. In Proceedings of the 2021 Devices for Integrated Circuit (DevIC), Kalyani, India, 19–20 May 2021; pp. 489–493. [Google Scholar]
- Hirtz, T.; Huurman, S.; Tian, H.; Yang, Y.; Ren, T.L. Framework for TCAD augmented machine learning on multi-I–V characteristics using convolutional neural network and multiprocessing. J. Semicond. 2021, 42, 124101. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.J.; Han, J.W.; Meyyappan, M. Machine learning approach for prediction of point defect effect in FinFET. IEEE Trans. Dev. Mater. Reliab. 2021, 21, 252–257. [Google Scholar] [CrossRef]
- Wong, H.Y.; Xiao, M.; Wang, B.; Chiu, Y.K.; Yan, X.; Ma, J.; Sasaki, K.; Wang, H.; Zhang, Y. TCAD-machine learning framework for device variation and operating temperature analysis with experimental demonstration. IEEE J. Electron. Dev. Soc. 2020, 8, 992–1000. [Google Scholar] [CrossRef]
- Woo, S.; Kim, S. Device design of single-gated feedback field-effect transistors to achieve latch-up behaviors with high current gains. Curr. Appl. Phys. 2020, 20, 1156–1162. [Google Scholar] [CrossRef]
- Kang, H.; Cho, J.; Kim, Y.; Lim, D.; Woo, S.; Cho, K.; Kim, S. Nonvolatile and volatile memory characteristics of a silicon nanowire feedback field-effect transistor with a nitride charge-storage layer. IEEE Trans. Electron. Dev. 2019, 66, 3342–3348. [Google Scholar] [CrossRef]
- Lindner, C.; Bromiley, P.A.; Ionita, M.C.; Cootes, T.F. Robust and accurate shape model matching using random forest regression-voting. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 1862–1874. [Google Scholar] [CrossRef]
- Synopsys Inc. Sentaurus Device User Guide; Synopsys Inc.: Mountain View, CA, USA, 2018. [Google Scholar]
- Kim, J.; Huynh, H.A.; Kim, S. Modeling of FinFET parasitic source/drain resistance with polygonal epitaxy. IEEE Trans. Electron. Dev. 2017, 64, 2072–2079. [Google Scholar] [CrossRef]
- Lei, Y.; Fang, J.; Zhang, B. A simulation-based evaluation of single-event burnout mechanisms and varied SEB hardening designs in power LDMOS transistors. Microelectron. Reliab. 2022, 135, 114598. [Google Scholar] [CrossRef]
- Tayal, S.; Ajayan, J.; Joseph, L.L.; Tarunkumar, J.; Nirmal, D.; Jena, B.; Nandi, A. A comprehensive investigation of vertically stacked silicon nanosheet field effect transistors: An analog/rf perspective. Silicon 2022, 14, 3543–3550. [Google Scholar] [CrossRef]
- Najmzadeh, M.; Berthomé, M.; Sallese, J.M.; Grabinski, W.; Ionescu, A.M. Electron mobility extraction in triangular gate-all-around Si nanowire junctionless nMOSFETs with cross-section down to 5 nm. Solid-State Electron. 2014, 98, 55–62. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Zhang, J. New machine learning algorithm: Random forest. In International Conference on Information Computsing and Applications; Springer: Berlin/Heidelberg, Germany, 2012; pp. 246–252. [Google Scholar]
- Moparthi, S.; Tiwari, P.K.; Saramekala, G.K. Sensitivity Analysis of Silicon Nanotube FET (Si NTFET) with TCAD Assisted Machine Learning. Silicon 2022, 14, 9021–9031. [Google Scholar] [CrossRef]
- Müller, A.C.; Guido, S. Introduction to Machine Learning with Python: A Guide for Data Scientists; O’Reilly Media, Inc.: Newton, MA, USA, 2016. [Google Scholar]
- Župančić, T.; Stresec, I.; Poljak, M. Predicting the transport properties of silicene nanoribbons using a neural network. In Proceedings of the 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 28 September–2 October 2020; pp. 44–48. [Google Scholar]
- Lin, C.H.; Tsai, C.Y.; Lee, K.C.; Yu, S.C.; Liau, W.R.; Hou, A.C.L.; Chen, Y.Y.; Kuo, C.K.; Lee, J.N.; Chao, M.C.T. A Model-Based-Random-Forest Framework for Predicting Vt Mean and Variance Based on Parallel Id Measurement. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2017, 37, 2139–2151. [Google Scholar] [CrossRef]
- Gil, G.; Park, S.; Woo, S. Solution for model parameter optimization and prediction of next-generation device DC characteristics. IEEE Trans. Electron. Dev. 2022, 69, 1781–1785. [Google Scholar] [CrossRef]
- Gil, G.; Woo, S. Prediction Methodology for Next-generation Device Characteristics using Machine Learning. J. Semicond. Technol. Sci. 2022, 22, 101–104. [Google Scholar] [CrossRef]
- Segal, M.R. Machine Learning Benchmarks and Random Forest Regression. UCSF: Center for Bioinformatics and Molecular Biostatistics. 2004. Available online: https://escholarship.org/uc/item/35x3v9t4 (accessed on 5 January 2023).
- Kim, M.; Kim, Y.; Lim, D.; Woo, S.; Cho, K.; Kim, S. Steep switching characteristics of single-gated feedback field-effect transistors. Nanotechnology 2016, 28, 055205. [Google Scholar] [CrossRef]
- Woo, S.; Kim, S. Dependence of latch-up and threshold voltages on channel length in single-gated feedback field-effect transistor. Semicond. Sci. Technol. 2022, 37, 085016. [Google Scholar] [CrossRef]
- Kim, Y.; Cho, J.; Lim, D.; Woo, S.; Cho, K.; Kim, S. Switchable-memory operation of silicon nanowire transistor. Adv. Electron. Mater. 2018, 4, 1800429. [Google Scholar] [CrossRef]
Name | Unit |
---|---|
Gate work function (WF) | 4.7–5.0 eV |
Gated-channel length (LG) | 25–250 nm |
Gated-channel region doping concentration (NA) | 1015–1019 cm−3 |
Gate voltage (VGS) sweep range | −3.0–3.0 V |
Non-gated channel length (LNG) | 50 nm |
Drain length (LD) | 100 nm |
Source length (LS) | 100 nm |
Gate oxide thickness (TOX) | 2 nm |
Nanowire thickness (TSi) | 10 nm |
Drain region doping concentration | 1 × 1019 cm−3 |
Source region doping concentration | 1 × 1019 cm−3 |
Non-gated channel region doping concentration (ND) | 1 × 1019 cm−3 |
Prediction Accuracy (R2) | ||||
---|---|---|---|---|
Number of Training Curves | Vlatch-up | Vlatch-down | Id,sat | Memory Window |
25 | 0.0110 | 0.4480 | −0.7819 | 0.5983 |
50 | 0.4427 | 0.7158 | −0.3019 | 0.7284 |
100 | 0.4464 | 0.9265 | 0.3801 | 0.728 |
150 | 0.4832 | 0.9382 | 0.3437 | 0.7398 |
200 | 0.5709 | 0.9539 | 0.9187 | 0.8685 |
300 | 0.7301 | 0.9676 | 0.9466 | 0.9101 |
400 | 0.8716 | 0.9820 | 0.9643 | 0.9737 |
Normalized RMSE | ||||
---|---|---|---|---|
Number of Training Curves | Vlatch-up | Vlatch-down | Id,sat | Memory Window |
25 | 0.2695 | 0.1966 | 0.3289 | 0.1627 |
50 | 0.2023 | 0.1410 | 0.2811 | 0.1338 |
100 | 0.2016 | 0.0717 | 0.1940 | 0.1616 |
150 | 0.1948 | 0.0676 | 0.2000 | 0.1309 |
200 | 0.1763 | 0.0567 | 0.0717 | 0.0972 |
300 | 0.1027 | 0.0501 | 0.0583 | 0.0570 |
400 | 0.0425 | 0.0413 | 0.0462 | 0.0462 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, S.; Jeon, J.; Kim, S. Prediction of Device Characteristics of Feedback Field-Effect Transistors Using TCAD-Augmented Machine Learning. Micromachines 2023, 14, 504. https://doi.org/10.3390/mi14030504
Woo S, Jeon J, Kim S. Prediction of Device Characteristics of Feedback Field-Effect Transistors Using TCAD-Augmented Machine Learning. Micromachines. 2023; 14(3):504. https://doi.org/10.3390/mi14030504
Chicago/Turabian StyleWoo, Sola, Juhee Jeon, and Sangsig Kim. 2023. "Prediction of Device Characteristics of Feedback Field-Effect Transistors Using TCAD-Augmented Machine Learning" Micromachines 14, no. 3: 504. https://doi.org/10.3390/mi14030504
APA StyleWoo, S., Jeon, J., & Kim, S. (2023). Prediction of Device Characteristics of Feedback Field-Effect Transistors Using TCAD-Augmented Machine Learning. Micromachines, 14(3), 504. https://doi.org/10.3390/mi14030504