Enantioselective Recognition of L-Lysine by ICT Effect with a Novel Binaphthyl-Based Complex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental
2.1.1. R-3,3’-bis((Prop-2-yn-1-yloxy) methyl)-[1,1’-binaphthalene]-2,2’-diol. (R-c)
2.1.2. Synthesis of Probe R-1
2.1.3. Synthesis of Probe S-1
2.1.4. Preparation of Solutions Required for the Test
3. Results and Discussion
3.1. Synthesis Step Scheme
3.2. Fluorescence Studies
3.2.1. Fluorescence Studies of Lysine
3.2.2. Enantiomeric Excess’s Studies
3.2.3. Study of Reaction Mechanism
3.2.4. Complexation Ratio Studies
3.2.5. Study of Specifically Reaction Lysine
3.2.6. Recognition of Enantiomers S-1 and R-1
3.2.7. Fluorescence Titration of R-1 and S-1 by L-Lys
3.2.8. Fluorescence Titration of R-1 and S-1 by D-Lys
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, X.; Marks, J.; Wang, C.; Dickie, D.; Pu, L. Enantioselective Sensing in the Fluorous Phase for Catalyst Screening: Application of a Racemic Fluorescent Probe. J. Org. Chem. 2021, 86, 4607–4615. [Google Scholar] [CrossRef]
- Guo, K.; Wang, P.; Tan, W.; Li, Y.; Gao, X.; Wang, Q.; Pu, L. Structure of a Dimeric BINOL-Imine-Zn(II) Complex and Its Role in Enantioselective Fluorescent Recognition. Inorg. Chem. 2020, 59, 17992–17998. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, X.; Qu, L.; Wang, L.; Song, J.; Wu, D.; Zhou, W.; Zhou, X.; Xiang, H.; Wang, J.; et al. Reversible Chromatic Change of Supramolecular Gels for Visual and Selective Chiral Recognition of Histidine. ACS Appl. Bio Mater. 2020, 3, 7236–7242. [Google Scholar] [CrossRef]
- Zeng, X.; Long, Z.; Jiang, X.; Zhang, Y.; Liu, Q.; Hu, J.; Li, C.; Wu, L.; Hou, X. Single Bimetallic Lanthanide-Based Metal–Organic Frameworks for Visual Decoding of a Broad Spectrum of Molecules. Anal. Chem. 2020, 92, 5500–5508. [Google Scholar] [CrossRef]
- Pu, L. Enantioselective Fluorescent Sensors: A Tale of BINOL. Acc. Chem. Res. 2012, 45, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yin, J.; Yoon, J. Recent Advances in Development of Chiral Fluorescent and Colorimetric Sensors. Chem. Rev. 2014, 114, 4918–4959. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, F.; Tian, J.; Jiang, L.; Lu, K.; Jiang, Y.; Li, H.; Yu, S.; Yu, X.; Pu, L. Semiquantitative Visual Chiral Assay with a Pseudoenantiomeric Fluorescent Sensor Pair. J. Org. Chem. 2021, 86, 9603–9609. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.T.; Zhang, X.; Zheng, Y.S. Fluorescence turn-on enantioselective recognition of both chiral acidic compounds and α-amino acids by a chiral tetraphenylethylene macrocycle amine. J. Org. Chem. 2015, 80, 8096–8101. [Google Scholar] [CrossRef]
- Qing, X.; Wang, T.; Zhang, F.; Wang, C. One-pot synthesis of 2, 4, 6-triarylpyridines from β-nitrostyrenes, substituted salicylic aldehydes and ammonium acetate. Rsc Adv. 2016, 6, 95957–95964. [Google Scholar] [CrossRef]
- Hembury, G.A.; Borovkov, V.V.; Inoue, Y. Chirality-Sensing Supramolecular Systems. Chem. Rev. 2007, 108, 1–73. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Functional amino acids in nutrition and health. Amino Acids 2013, 45, 407–411. [Google Scholar] [CrossRef] [Green Version]
- Deischter, J.; Müller, F.; Bong, B.; Maurer, C.; Hartmann, S.S.; Palkovits, R. Separation by Size Exclusion: Selective Liquid-Phase Adsorption of l-Lysine from Lysine–Glucose Mixtures on Zeolites. ACS Sustain. Chem. Eng. 2022, 10, 10211–10222. [Google Scholar] [CrossRef]
- Wang, T.; Feugang, J.M.; Crenshaw, M.A.; Regmi, N.; Blanton, J.J.R.; Liao, S.F. A Systems Biology Approach Using Transcriptomic Data Reveals Genes and Pathways in Porcine Skeletal Muscle Affected by Dietary Lysine. Int. J. Mol. Sci. 2017, 18, 885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, P.L.; Yan, H.C.; Wang, X.Q.; Zhang, C.M.; Zhu, C.; Shu, G.; Jiang, Q.Y. Effects of Dietary Lysine Levels on Apparent Nutrient Digestibility and Serum Amino Acid Absorption Mode in Growing Pigs. Asian-Australas. J. Anim. Sci. 2013, 26, 1003–1011. [Google Scholar] [CrossRef] [Green Version]
- Mastellar, S.; Coleman, R.; Urschel, K. Controlled trial of whole body protein synthesis and plasma amino acid concentrations in yearling horses fed graded amounts of lysine. Veter-J. 2016, 216, 93–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, C.-L.; Zhang, Z.-M.; Song, Z.-W.; Gao, C.-Q.; Yan, H.-C.; Wang, X.-Q. mTORC1-Mediated Satellite Cell Differentiation Is Required for Lysine-Induced Skeletal Muscle Growth. J. Agric. Food Chem. 2020, 68, 4884–4892. [Google Scholar] [CrossRef] [PubMed]
- Loaëc, G.; Niquet-Léridon, C.; Henry, N.; Jacolot, P.; Jouquand, C.; Janssens, M.; Hance, P.; Cadalen, T.; Hilbert, J.-L.; Desprez, B.; et al. Impact of Variety and Agronomic Factors on Crude Protein and Total Lysine in Chicory; Nε-Carboxymethyl-lysine-Forming Potential during Drying and Roasting. J. Agric. Food Chem. 2015, 63, 10295–10302. [Google Scholar] [CrossRef]
- Jin, C.; Bao, J. Lysine Production by Dry Biorefining of Wheat Straw and Cofermentation of Corynebacterium glutamicum. J. Agric. Food Chem. 2021, 69, 1900–1906. [Google Scholar] [CrossRef]
- Kim, S.E. Looking to lysine. CEN Glob. Enterp. 2022, 100, 15–17. [Google Scholar] [CrossRef]
- Pu, L. Simultaneous Determination of Concentration and Enantiomeric Composition in Fluorescent Sensing. Acc. Chem. Res. 2017, 50, 1032–1040. [Google Scholar] [CrossRef]
- Leung, D.; Kang, S.O.; Anslyn, E.V. Rapid determination of enantiomeric excess: A focus on optical approaches. Chem. Soc. Rev. 2012, 41, 448–479. [Google Scholar] [CrossRef]
- Accetta, A.; Corradini, R.; Marchelli, R. Enantioselective sensing by luminescence. In Luminescence Applied in Sensor Science; Springer: Berlin/Heidelberg, Germany, 2010; pp. 175–216. [Google Scholar] [CrossRef]
- Hein, J.E.; Fokin, V.V. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: New reactivity of copper(i) acetylides. Chem. Soc. Rev. 2010, 39, 1302–1315. [Google Scholar] [CrossRef] [PubMed]
- Rappoport, D.; Furche, F. Photoinduced Intramolecular Charge Transfer in 4-(Dimethyl)aminobenzonitrile—A Theoretical Perspective. J. Am. Chem. Soc. 2004, 126, 1277–1284. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, K.; Zhuang, G.; Xie, Z.; Zhang, C.; Cao, F.; Pan, G.; Chen, H.; Zou, B.; Ma, Y. Multicolored-Fluorescence Switching of ICT-Type Organic Solids with Clear Color Difference: Mechanically Controlled Excited State. Chem.–A Eur. J. 2015, 21, 2474–2479. [Google Scholar] [CrossRef] [PubMed]
- Sumalekshmy, S.; Gopidas, K.R. Photoinduced Intramolecular Charge Transfer in Donor−Acceptor Substituted Tetrahydropyrenes. J. Phys. Chem. B 2004, 108, 3705–3712. [Google Scholar] [CrossRef]
- Karasulu, B.; Thiel, W. Photoinduced Intramolecular Charge Transfer in an Electronically Modified Flavin Derivative: Roseoflavin. J. Phys. Chem. B 2015, 119, 928–943. [Google Scholar] [CrossRef] [Green Version]
- Xiong, K.; Huo, F.; Chao, J.-B.; Zhang, Y.; Yin, C. Colorimetric and NIR Fluorescence Probe with Multiple Binding Sites for Distinguishing Detection of Cys/Hcy and GSH in Vivo. Anal. Chem. 2018, 91, 1472–1478. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, S.; Wei, Z.; Guo, J.; Sun, X.; Hu, Y. Enantioselective Recognition of L-Lysine by ICT Effect with a Novel Binaphthyl-Based Complex. Micromachines 2023, 14, 500. https://doi.org/10.3390/mi14030500
Tang S, Wei Z, Guo J, Sun X, Hu Y. Enantioselective Recognition of L-Lysine by ICT Effect with a Novel Binaphthyl-Based Complex. Micromachines. 2023; 14(3):500. https://doi.org/10.3390/mi14030500
Chicago/Turabian StyleTang, Shi, Zhaoqin Wei, Jiani Guo, Xiaoxia Sun, and Yu Hu. 2023. "Enantioselective Recognition of L-Lysine by ICT Effect with a Novel Binaphthyl-Based Complex" Micromachines 14, no. 3: 500. https://doi.org/10.3390/mi14030500
APA StyleTang, S., Wei, Z., Guo, J., Sun, X., & Hu, Y. (2023). Enantioselective Recognition of L-Lysine by ICT Effect with a Novel Binaphthyl-Based Complex. Micromachines, 14(3), 500. https://doi.org/10.3390/mi14030500