Conduction Conditions for Self-Healing of Metal Interconnect Using Copper Microparticles Dispersed with Silicone Oil
Abstract
1. Introduction
2. Examination of Bridging and Conduction Morphology
3. Direct Observation of Microparticle Chain Behavior
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kua, C.H.; Lam, Y.C.; Rodriguez, I.; Yang, C.; Youcef-Toumi, K. Dynamic cell fractionation and transportation using moving dielectrophoresis. Anal. Chem. 2007, 79, 6975–6987. [Google Scholar] [CrossRef]
- Zaman, M.A.; Padhy, P.; Wu, M.; Ren, W.; Jensen, M.A.; Davis, R.W.; Hesselink, L. Controlled transport of individual microparticles using dielectrophoresis. Langmuir 2023, 39, 101–110. [Google Scholar] [CrossRef]
- Gierhart, B.C.; Howitt, D.G.; Chen, S.J.; Smith, R.L.; Collins, S.D. Frequency dependence of gold nanoparticle superassembly by dielectrophoresis. Langmuir 2007, 23, 12450–12456. [Google Scholar] [CrossRef]
- Bernard, L.; Calame, M.; Van Der Molen, S.J.; Liao, J.; Schönenberger, C. Controlled formation of metallic nanowires via Au nanoparticle Ac trapping. Nanotechnology 2007, 18, 235202. [Google Scholar] [CrossRef]
- Xiong, X.; Busnaina, A.; Selvarasah, S.; Somu, S.; Wei, M.; Mead, J.; Chen, C.L.; Aceros, J.; Makaram, P.; Dokmeci, M.R. Directed assembly of gold nanoparticle nanowires and networks for nanodevices. Appl. Phys. Lett. 2007, 91, 063101. [Google Scholar] [CrossRef]
- Cheon, D.; Kumar, S.; Kim, G.H. Assembly of gold nanoparticles of different diameters between nanogap electrodes. Appl. Phys. Lett. 2010, 96, 013101. [Google Scholar] [CrossRef]
- Lee, J.; Mubeen, S.; Hangarter, C.M.; Mulchandani, A.; Chen, W.; Myung, N.V. Selective and rapid room temperature detection of H2S using gold nanoparticle chain arrays. Electroanalysis 2011, 23, 2623–2628. [Google Scholar] [CrossRef]
- Bezryadin, A.; Dekker, C.; Schmid, G. Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl. Phys. Lett. 1997, 71, 1273–1275. [Google Scholar] [CrossRef]
- Amlani, I.; Rawlett, A.M.; Nagahara, L.A.; Tsui, R.K. An approach to transport measurements of electronic molecules. Appl. Phys. Lett. 2002, 80, 2761–2763. [Google Scholar] [CrossRef]
- Krahne, R.; Dadosh, T.; Gordin, Y.; Yacoby, A.; Shtrikman, H.; Mahalu, D.; Sperling, J.; Bar-Joseph, I. Nanoparticles and nanogaps: Controlled positioning and fabrication. Phys. E Low Dimens. Syst. Nanostruct. 2003, 17, 498–502. [Google Scholar] [CrossRef]
- Na, J.S.; Ayres, J.; Chandra, K.L.; Chu, C.; Gorman, C.B.; Parsons, G.N. Conduction mechanisms and stability of single molecule nanoparticle/ molecule/nanoparticle junctions. Nanotechnology 2007, 18, 035203. [Google Scholar] [CrossRef]
- Kumar, S.; Seo, Y.K.; Kim, G.H. Manipulation and trapping of semiconducting ZnO nanoparticles into nanogap electrodes by dielectrophoresis technique. Appl. Phys. Lett. 2009, 94, 153104. [Google Scholar] [CrossRef]
- Hoshino, K.; Yamada, K.; Matsumoto, K.; Shimoyama, I. Creating a nano-sized light source by electrostatic trapping of nanoparticles in a nanogap. J. Micromech. Microeng. 2006, 16, 1285–1289. [Google Scholar] [CrossRef]
- Hwang, Y.; Sohn, H.; Phan, A.; Yaghi, O.M.; Candler, R.N. Dielectrophoresis-assembled zeolitic imidazolate framework nanoparticle-coupled resonators for highly sensitive and selective gas detection. Nano Lett. 2013, 13, 5271–5276. [Google Scholar] [CrossRef]
- Koshi, T.; Iwase, E. Self-healing metal wire using electric field trapping of metal nanoparticles. Jpn. J. Appl. Phys. 2015, 54, 06FP03. [Google Scholar] [CrossRef]
- Koshi, T.; Iwase, E. Particle size dependence on self-healing metal wire using an electric field trapping of metal nanoparticles. Trans. JSME 2016, 82, 15–470. [Google Scholar] [CrossRef]
- Koshi, T.; Nakajima, Y.; Iwase, E. Voltage and current conditions for nanoparticle chain formation using dielectrophoresis. Micro Nano Lett. 2017, 12, 532–535. [Google Scholar] [CrossRef]
Gap Width [µm] | Interconnect Width [µm] | Interconnect Thickness [µm] |
---|---|---|
10 | 25 | 0.50 |
Conductivity [S/m] | Permittivity [F/m] | Viscosity [cSt] | Density [g/cm3] | Boiling Point [°C] | |
---|---|---|---|---|---|
Silicone oil (KF-96-30cs, Shin-Etsu Chemical Co., Ltd., Tokyo, Japan) | 1.00 × 10−12 or less | 2.4 × 10−13 | 30 | 0.96 | 152 |
Conductivity [S/m] | Permittivity [F/m] | Density [g/cm3] | Diameter [µm] | |
---|---|---|---|---|
Copper microparticles (FMC-SB, Furukawa Chemical Co., Ltd., Osaka, Japan) | 5.76 × 107 | 7.7 × 10−13 | 3.5 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suetsugu, N.; Iwase, E. Conduction Conditions for Self-Healing of Metal Interconnect Using Copper Microparticles Dispersed with Silicone Oil. Micromachines 2023, 14, 475. https://doi.org/10.3390/mi14020475
Suetsugu N, Iwase E. Conduction Conditions for Self-Healing of Metal Interconnect Using Copper Microparticles Dispersed with Silicone Oil. Micromachines. 2023; 14(2):475. https://doi.org/10.3390/mi14020475
Chicago/Turabian StyleSuetsugu, Naoki, and Eiji Iwase. 2023. "Conduction Conditions for Self-Healing of Metal Interconnect Using Copper Microparticles Dispersed with Silicone Oil" Micromachines 14, no. 2: 475. https://doi.org/10.3390/mi14020475
APA StyleSuetsugu, N., & Iwase, E. (2023). Conduction Conditions for Self-Healing of Metal Interconnect Using Copper Microparticles Dispersed with Silicone Oil. Micromachines, 14(2), 475. https://doi.org/10.3390/mi14020475