Indoor Positioning on Smartphones Using Built-In Sensors and Visual Images
Abstract
:1. Introduction
2. Related Work
3. System Structure
3.1. Recognition of User’s Photo Gesture
3.2. Generation of Bag of Visual Words and Database Establishment
3.2.1. Feature Extraction
3.2.2. Feature Point Description
3.3. Image Retrieval and Positioning
Algorithm 1: Voting Scheme |
Input: all candidate sorted images { } |
1: Vote for all sorted images { }; |
2: If the top sorted three candidate images { } are associated with the same id; |
3: Then, the best matching image is ; |
4: Otherwise, the best matching can be acquired using the surf matching Algorithm; |
Output: the best matching image |
Algorithm 2: Rematch Algorithm |
Input: all candidate sorted images { } |
1: Detect SURF features of candidate image and query image ; 2: Detect image matching points using FLANN algorithm; |
3: Calculate the number of matching points, the most is ; |
Output: the best matching image |
4. Experimental Results and Analysis
4.1. Evaluation of User’s Photographing Direction
4.2. Visual Positioning Technology Evaluation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, Q.F.; Ye, Z.A. Research on standardization of terms related to beidou satellite navigation system. J. Navig. Position. 2018, 6, 72–77. [Google Scholar]
- Chen, Z.Z. Base station location verification based on user location. Inf. Commun. 2018, 185, 93–95. [Google Scholar]
- Gezici, S.; Tian, Z.; Giannakis, G.B.; Kobayashi, H.; Molisch, A.F.; Poor, H.V.; Sahinoglu, Z. Localization via ultra-wideband radios: A look at positioning aspects for future sensor networks. IEEE Signal Process. Mag. 2005, 22, 70–84. [Google Scholar] [CrossRef]
- Bi, J.; Huang, L.; Cao, H.; Yao, G.; Sang, W.; Zhen, J.; Liu, Y. Improved Indoor Fingerprinting Localization Method Using Clustering Algorithm and Dynamic Compensation. ISPRS Int. J. Geo-Inf. 2021, 10, 613. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, R.; Liu, M.; Xiao, A.; Wu, D.; Zhao, S. Indoor Visual Positioning Aided by CNN-Based Image Retrieval: Training-Free, 3D Modeling-Free. Sensors 2018, 18, 2692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.; Kim, K.-S.; Li, K.-J. Improving Room-Level Location for Indoor Trajectory Tracking with Low IPS Accuracy. ISPRS Int. J. Geo-Inf. 2021, 10, 620. [Google Scholar] [CrossRef]
- Batistić, L.; Tomic, M. Overview of indoor positioning system technologies. In Proceedings of the 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 21–25 May 2018; pp. 473–478. [Google Scholar]
- Chang, Y.-H.; Zhang, Y.-Y. Deep Learning for Clothing Style Recognition Using YOLOv5. Micromachines 2022, 13, 1678. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, S.; Bai, Q.; Song, Q.; Zhang, X.; Pu, R. Research on Intelligent Robot Point Cloud Grasping in Internet of Things. Micromachines 2022, 13, 1999. [Google Scholar] [CrossRef] [PubMed]
- Ventura, J.; Arth, C.; Reitmayr, G.; Schmalstieg, D. Global localization from monocular slam on a mobile phone. IEEE Trans. Vis. Comput. Graph. 2014, 20, 531–539. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, G.; Moschitta, A.; Carbone, P. Positioning techniques in indoor environments based on stochastic modeling of UWB round-trip-time measurements. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2272–2281. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Ren, X.; Fritsche, M.; Wickert, J.; Schuh, H. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou. Sci. Rep. 2015, 5, 8328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Liu, X.; Yu, B.; Jia, R.; Gan, X. An improved WiFi positioning method based on fingerprint clustering and signal weighted Euclidean distance. Sensors 2019, 19, 2300. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.-A.; Qu, Z.; Hou, C.; Si, W.; Zhang, C. WiFi positioning based on user orientation estimation and smartphone carrying position recognition. Wirel. Commun. Mob. Comput. 2018, 2018, 5243893. [Google Scholar] [CrossRef]
- Zuo, Z.; Liu, L.; Zhang, L.; Fang, Y. Indoor positioning based on Bluetooth low-energy beacons adopting graph optimization. Sensors 2018, 18, 3736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.S.; Huang, T.S. CBIR: From low-level features to high-level semantics. In Image and Video Communications and Processing 2000; SPIE: San Jose, CA, USA, 2000; pp. 426–431. [Google Scholar]
- Karim, A.A.A.; Sameer, R.A. Image classification using bag of visual words (bovw). Al-Nahrain J. Sci. 2018, 21, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Jia, S.; Ma, L.; Tan, X.; Qin, D. Bag-of-visual words based improved image retrieval algorithm for vision indoor positioning. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–4. [Google Scholar]
- Xia, Y.; Xiu, C.; Yang, D. Visual indoor positioning method using image database. In Proceedings of the 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS), Wuhan, China, 22–23 March 2018; pp. 1–8. [Google Scholar]
- Zhu, L.; Jin, H.; Zheng, R.; Feng, X. Weighting scheme for image retrieval based on bag-of-visual-words. IET Image Process. 2014, 8, 509–518. [Google Scholar] [CrossRef]
- Hu, M.; Chen, Y.; Kwok, J.T.-Y. Building sparse multiple-kernel SVM classifiers. IEEE Trans. Neural Netw. 2009, 20, 827–839. [Google Scholar] [PubMed]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up robust features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Ayres, G.; Jones, J. Self-mapping radio maps for location fingerprinting. Wirel. Netw. 2015, 21, 1485–1497. [Google Scholar] [CrossRef]
- Filliat, D. A visual bag of words method for interactive qualitative localization and mapping. In Proceedings of the International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007; pp. 3921–3926. [Google Scholar]
- Suju, D.A.; Jose, H. FLANN: Fast approximate nearest neighbour search algorithm for elucidating human-wildlife conflicts in forest areas. In Proceedings of the 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN), Chennai, India, 16–18 March 2017; pp. 1–6. [Google Scholar]
Method | Accuracy | APE | SD |
---|---|---|---|
IBVW | 75% | 0.39 m | 0.97 m |
ORB-based | 55% | 1.05 m | 3.23 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Qin, D.; Tang, H.; Bie, H.; Zhang, G.; Ma, L. Indoor Positioning on Smartphones Using Built-In Sensors and Visual Images. Micromachines 2023, 14, 242. https://doi.org/10.3390/mi14020242
Yang J, Qin D, Tang H, Bie H, Zhang G, Ma L. Indoor Positioning on Smartphones Using Built-In Sensors and Visual Images. Micromachines. 2023; 14(2):242. https://doi.org/10.3390/mi14020242
Chicago/Turabian StyleYang, Jiaqiang, Danyang Qin, Huapeng Tang, Haoze Bie, Gengxin Zhang, and Lin Ma. 2023. "Indoor Positioning on Smartphones Using Built-In Sensors and Visual Images" Micromachines 14, no. 2: 242. https://doi.org/10.3390/mi14020242
APA StyleYang, J., Qin, D., Tang, H., Bie, H., Zhang, G., & Ma, L. (2023). Indoor Positioning on Smartphones Using Built-In Sensors and Visual Images. Micromachines, 14(2), 242. https://doi.org/10.3390/mi14020242