Alternative Approach to Design and Optimization of High-Q Ring Resonators for Membrane-Free Acoustic Sensors
Abstract
:1. Introduction
2. Principles Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allwood, G.; Wild, G.; Hinckley, S. Optical Fiber Sensors in Physical Intrusion Detection Systems: A Review. IEEE Sens. J. 2016, 16, 5497–5509. [Google Scholar] [CrossRef]
- Wissmeyer, G.; Pleitez, M.A.; Rosenthal, A.; Ntziachristos, V. Looking at sound: Optoacoustics with all-optical ultrasound detection. Light-Sci. Appl. 2018, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Fischer, B. Optical microphone hears ultrasound. Nat. Photonics 2016, 10, 356–358. [Google Scholar] [CrossRef]
- Zhu, W.; Li, D.; Liu, J.; Wang, R. Membrane-free acoustic sensing based on an optical fiber Mach-Zehnder interferometer. Appl. Opt. 2020, 59, 1775–1779. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Sun, J.; Li, C.; Shi, Y. Broadband Ultrasound Detection Using Silicon Micro-Ring Resonators. J. Light. Technol. 2023, 41, 1906–1910. [Google Scholar] [CrossRef]
- Han, C.; Zhao, C.; Ding, H.; Chen, C. Spherical microcavity-based membrane-free Fizeau interferometric acoustic sensor. Opt. Lett. 2019, 44, 3677–3680. [Google Scholar] [CrossRef] [PubMed]
- Fischer, B.; Sarasini, F.; Tirillo, J.; Touchard, F.; Chocinski-Arnault, L.; Mellier, D.; Panzer, N.; Sommerhuber, R.; Russo, P.; Papa, I.; et al. Impact damage assessment in biocomposites by micro-CT and innovative air-coupled detection of laser-generated ultrasound. Compos. Struct. 2019, 210, 922–931. [Google Scholar] [CrossRef]
- Fu, X.; Lu, P.; Zhang, J.; Qu, Z.; Zhang, W.; Li, Y.; Hu, P.; Yan, W.; Ni, W.; Liu, D.; et al. Micromachined extrinsic Fabry-Perot cavity for low-frequency acoustic wave sensing. Opt. Express 2019, 27, 24300–24310. [Google Scholar] [CrossRef]
- Gao, R.; Zhang, M.; Qi, Z.-M. Miniature all-fibre microflown directional acoustic sensor based on crossed self-heated micro-Co2+-doped optical fibre Bragg gratings. Appl. Phys. Lett. 2018, 113, 134102. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, H.; Liu, X.; Bai, Q.; Zhang, H.; Gao, Y.; Jin, B. A Comprehensive Study of Optical Fiber Acoustic Sensing. IEEE Access 2019, 7, 85821–85837. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, J.; Bai, J.; Li, Z.; Zhao, X.; Xue, C. The manufacture and reliability analysis of the all-rigid Fabry-Perot resonator for fiber-optic acoustic sensors. Front. Phys. 2023, 11, 1172113. [Google Scholar] [CrossRef]
- Preisser, S.; Rohringer, W.; Liu, M.; Kollmann, C.; Zotter, S.; Fischer, B.; Drexler, W. All-optical highly sensitive akinetic sensor for ultrasound detection and photoacoustic imaging. Biomed. Opt. Express 2016, 7, 4171–4186. [Google Scholar] [CrossRef] [PubMed]
- Ling, T.; Chen, S.-L.; Guo, L.J. High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators. Appl. Phys. Lett. 2011, 98, 204103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, S.-L.; Ling, T.; Guo, L.J. Review of Imprinted Polymer Microrings as Ultrasound Detectors: Design, Fabrication, and Characterization. IEEE Sens. J. 2015, 15, 3241–3248. [Google Scholar] [CrossRef]
- Ling, T.; Chen, S.-L.; Guo, L.J. Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector. Opt. Express 2011, 19, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Zhang, H.F.; Sun, C. Highly sensitive ultrasound detection using nanofabricated polymer micro-ring resonators. Nano Converg. 2023, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- Tu, X.; Wang, Y.; Guo, Z.; Chen, Z.; Huang, T.; Wu, X.; Luo, W. Underwater Acoustic Wave Detection Based on Packaged Optical Microbubble Resonator. J. Light. Technol. 2022, 40, 6272–6279. [Google Scholar] [CrossRef]
- Westerveld, W.J.; Mahmud-Ul-Hasan, M.; Shnaiderman, R.; Ntziachristos, V.; Rottenberg, X.; Severi, S.; Rochus, V. Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics. Nat. Photonics 2021, 15, 341–345. [Google Scholar] [CrossRef]
- Basiri-Esfahani, S.; Armin, A.; Forstner, S.; Bowen, W.P. Precision ultrasound sensing on a chip. Nat. Commun. 2019, 10, 132. [Google Scholar] [CrossRef]
- Lee, H.; Chen, T.; Li, J.; Yang, K.Y.; Jeon, S.; Painter, O.; Vahala, K.J. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photonics 2012, 6, 369–373. [Google Scholar] [CrossRef]
- Gu, J.; Liu, J.; Bai, Z.; Wang, H.; Cheng, X.; Li, G.; Zhang, M.; Li, X.; Shi, Q.; Xiao, M.; et al. Dry-etched ultrahigh-Q silica microdisk resonators on a silicon chip. Photonics Res. 2021, 9, 722–725. [Google Scholar] [CrossRef]
- Honari, S.; Haque, S.; Lu, T. Fabrication of ultra-high Q silica microdisk using chemo-mechanical polishing. Appl. Phys. Lett. 2021, 119, 031107. [Google Scholar] [CrossRef]
- Wu, C.; Lin, Y.; Jin, X.; Ma, H.; Jin, Z. Synchronous in-phase and quadrature demodulation technique for resonant micro-optic gyroscope. Appl. Opt. 2019, 58, 5050–5056. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ma, H.; Li, H.; Jin, Z. Single-polarization fiber-pigtailed high-finesse silica waveguide ring resonator for a resonant micro-optic gyroscope. Opt. Lett. 2017, 42, 3658–3661. [Google Scholar] [CrossRef]
- Yang, W.; Song, S.; Powell, K.; Tian, X.; Li, L.; Linh, N.; Yi, X. Etched Silicon-on-Insulator Microring Resonator for Ultrasound Measurement. IEEE Photonics J. 2020, 12, 6801409. [Google Scholar] [CrossRef]
- Zhu, J.; Ozdemir, S.K.; Xiao, Y.-F.; Li, L.; He, L.; Chen, D.-R.; Yang, L. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics 2010, 4, 46–49. [Google Scholar] [CrossRef]
- Qian, K.; Tang, J.; Guo, H.; Liu, W.; Liu, J.; Xue, C.; Zheng, Y.; Zhang, C. Under-Coupling Whispering Gallery Mode Resonator Applied to Resonant Micro-Optic Gyroscope. Sensors 2017, 17, 100. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, Y.; Xue, C.; Zhang, C.; Chen, Y. Filtering effect of SiO2 optical waveguide ring resonator applied to optoelectronic oscillator. Opt. Express 2018, 26, 12638–12647. [Google Scholar] [CrossRef]
- Han, Y.; Zheng, Y.; Li, N.; Luo, Y.; Xue, C.; Bai, J.; Chen, J. Acoustic Sensing Performance Investigation Based on Grooves Etched in the Ring Resonators. Micromachines 2023, 14, 512. [Google Scholar] [CrossRef]
- Klemm, K.; Pieszynski, K.; Rozniakowski, K. Examination of air density fluctuations with the aid of laser beam. Opt. Appl. 2007, 37, 219–228. [Google Scholar]
- Serdyuk, V.M. Approximate analytical model of the refracted field of the Gaussian light beam on a plane dielectric interface. Opt. Commun. 2023, 535, 129310. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Xu, R.; Lin, W. Investigation of Terahertz Wave Propagation Along Shielded Dielectric Multiple-Slot Waveguide. J. Infrared Millim. Terahertz Waves 2011, 32, 204–215. [Google Scholar] [CrossRef]
- Zhou, S.; Tu, X.; Wu, Q.; Liu, M.; Zhang, Y.; Chen, P.; Wang, W.; Xu, Y.; Deng, J.; Zhao, Q.; et al. Photonics-inspired terahertz whispering gallery mode resonator waveguide on silicon platform. Appl. Phys. Lett. 2021, 119, 171103. [Google Scholar] [CrossRef]
Characteristics | Symbols | Values |
---|---|---|
Wavelength of light | 1.55 µm | |
Frequency linewidth of laser | 1 kHz | |
Effective refractive index | 1.4486 | |
Transmission loss per unit Length | 0.02 dB/cm | |
Cavity length | 0.05 m | |
Transmission factor | 0.9886 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Chen, J.; Han, Y.; Bai, J.; Luo, Y.; Wang, Y.; Xue, C. Alternative Approach to Design and Optimization of High-Q Ring Resonators for Membrane-Free Acoustic Sensors. Micromachines 2023, 14, 1876. https://doi.org/10.3390/mi14101876
Zheng Y, Chen J, Han Y, Bai J, Luo Y, Wang Y, Xue C. Alternative Approach to Design and Optimization of High-Q Ring Resonators for Membrane-Free Acoustic Sensors. Micromachines. 2023; 14(10):1876. https://doi.org/10.3390/mi14101876
Chicago/Turabian StyleZheng, Yongqiu, Jiamin Chen, Yuan Han, Jiandong Bai, Yifan Luo, Yonghua Wang, and Chenyang Xue. 2023. "Alternative Approach to Design and Optimization of High-Q Ring Resonators for Membrane-Free Acoustic Sensors" Micromachines 14, no. 10: 1876. https://doi.org/10.3390/mi14101876
APA StyleZheng, Y., Chen, J., Han, Y., Bai, J., Luo, Y., Wang, Y., & Xue, C. (2023). Alternative Approach to Design and Optimization of High-Q Ring Resonators for Membrane-Free Acoustic Sensors. Micromachines, 14(10), 1876. https://doi.org/10.3390/mi14101876