A Calibration Method for the Resolution of 2D TPP Laser Direct Writing
Abstract
:1. Introduction
2. 2D TPP
2.1. Principles of 2D TPP
2.2. Problems Caused by the 2D TPP
2.3. TPP Fabrication Platform
3. Results and Discussion
3.1. 45° Scanning Method to Study Large Aspect Ratio Voxels
3.2. Validation Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bougdid, Y.; Maouli, I.; Rahmouni, A.; Mochizuki, K.; Halim, M.; Sekkat, Z. Laser nanofabrication in photoresists by two-photon absorption. Mol. Mach. 2018, 8, 107400G. [Google Scholar]
- Castro-Fernandez, S.; Cruz, C.M.; Mariz, I.F.A.; Marquez, I.R.; Jimenez, V.G.; Palomino-Ruiz, L.; Cuerva, J.M.; Macoas, E.; Campana, A.G. Two-photon absorption enhancement by the inclusion of a tropone ring in distorted nanographene ribbons. Angew. Chem. 2020, 59, 7139–7145. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, S. Redefining microfabrication of high-precision optics: How two-photon grayscale lithography improves quality and throughput of printing microparts. PhotonicsViews 2020, 17, 36–39. [Google Scholar] [CrossRef]
- Carlotti, M.; Tricinci, O.; Mattoli, V. Novel, high-feature size, subtractive photoresist formulations for 3D direct laser writing based on cyclic ketene acetals. Adv. Mater. Technol. 2022, 7, 2101590. [Google Scholar] [CrossRef]
- Zuev, D.M.; Nguyen, A.; Putlyaev, V.I.; Roger, J.N. 3D printing and bioprinting using multiphoton lithography. Bioprinting 2020, 20, e00090. [Google Scholar] [CrossRef]
- Northfield, H.; Krupin, O.; Tait, R.N.; Pierre, B. Tri-layer contact photolithography process for high-resolution lift-off. Microelectron. Eng. 2021, 241, 111545. [Google Scholar] [CrossRef]
- Zhou, X.; Hou, Y.; Lin, J. A review on the processing accuracy of two-photon polymerization. AIP Adv. 2015, 5, 030701. [Google Scholar] [CrossRef]
- DeVoe, R.J.; Kalweit, H.W.; Leatherdale, C.; Williams, T.R. Voxel shapes in two-photon microfabrication. Proc. SPIE 2003, 4797, 310–316. [Google Scholar]
- Liao, C.; Kao, C.; Chen, P. Major-Axis planning method for fabrication of high aspect ratio structure based on two-photon photopolymerization technology. In Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Quebec, QC, Canada, 26–29 August 2018; The American Society of Mechanical Engineers: New York, NY, USA, 2018; Volume 4, pp. 1–9. [Google Scholar]
- DeVoe, R.J.; Lee, T.C.; Gates, B.J. Negative Contrast Curves for Two-photon Free Radical Polymerization Systems and Their Potential Applications in Sub-diffraction Limited Two-photon Photolithography. MRS Online Proc. Libr. 2013, 1499, 66–71. [Google Scholar] [CrossRef]
- Sun, H.; Takada, K.; Kim, M.; Lee, K.; Kawata, S. Scaling laws of voxels in two-photon photopolymerization nanofabrication. Appl. Phys. Lett. 2003, 83, 1104–1106. [Google Scholar] [CrossRef]
- Lin, J.; Jing, X.; Zhou, X.; Zheng, X.; Gao, R.; Wang, Y. Scaling laws of nanorods in two-photon polymerization nanofabrication using a continuous scanning method. AIP Adv. 2016, 6, 105014. [Google Scholar]
- Juodkazis, S.; Miwa, V.; Seet, K.K.; Miwa, M.; Misawa, H. Two-photon lithography of nanorods in SU-8 photoresist. Nanotechnology 2005, 16, 846–849. [Google Scholar] [CrossRef]
- Bougdid, Y.; Sekkat, Z. Voxels Optimization in 3D Laser Nanoprinting. Sci. Rep. 2020, 10, 10409. [Google Scholar] [CrossRef] [PubMed]
- Ercolano, G.; van Nisselroy, C.; Merle, T.; Vörös, J.; Momotenko, D.; Koelmans, W.W.; Zambelli, T. Additive Manufacturing of Sub-Micron to Sub-mm Metal Structures with Hollow AFM Cantilevers. Micromachines 2020, 11, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purtov, J.; Rogin, P.; Verch, A.; Johansen, V.E.; Hensel, R. Nanopillar Diffraction Gratings by Two-Photon Lithography. J. Nanomater. 2019, 9, 1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.T. Research on Polymer Integrated Photonic Devices Based on Femtosecond Laser Direct Writing. Ph.D. Thesis, Jilin University, Jilin, China, December 2021. [Google Scholar]
- Paz, V.F.; Emons, M.; Obata, K.; Ovsianikov, A.; Peterhänsel, S.; Frenner, K.; Reinhardt, C.; Chichkov, B.; Morgner, U.; Osten, W. Development of functional sub-100 nm structures with 3D two-photon polymerisation technique and optical methods for characterization. J. Laser Appl. 2012, 24, 042004. [Google Scholar] [CrossRef] [Green Version]
- Bougdid, Y.; Maouli, I.; Rahmouni, A.; Mochizuki, K.; Bennani, I.; Halim, M.; Sekkat, Z. Systematic λ/21 resolution achieved in nanofabrication by two-photon-absorption induced polymerization. J. Micromech. Microeng. 2019, 29, 035018. [Google Scholar] [CrossRef]
- Harinarayana, V.; Shin, Y.C. Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: A comprehensive review. Opt. Laser Technol. 2021, 142, 107180. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, J.; Zhao, H.; Huang, F. Prediction of the fiber diameter of melt electrospinning writing by kriging model. J. Appl. Polym. Sci. 2022, 139, 52212. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, J. The discuss of exposure technology in lithography process. Mod. Manuf. Eng. 2008, 12, 131–135. [Google Scholar]
Num | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
laser power P (mW) | 60 | 80 | 100 | 120 | 140 | 160 |
Processing speed V (μm/s) | 100 | 200 | 300 | 400 | 500 |
P (mW) | 60 | 80 | 100 | 120 | 140 | 160 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V (µm/s) | lvoxel | Dvoxel | lvoxel | Dvoxel | lvoxel | Dvoxel | lvoxel | Dvoxel | lvoxel | Dvoxel | lvoxel | Dvoxel | |
100 | 9.00 | 1.96 | 11.56 | 2.11 | 12.35 | 2.13 | 14.37 | 2.17 | 15.88 | 2.16 | 17.39 | 2.2 | |
200 | 5.68 | 1.69 | 7.97 | 1.91 | 9.08 | 1.88 | 10.51 | 1.93 | 11.99 | 2.04 | 13.39 | 2.08 | |
300 | 3.94 | 1.53 | 6.16 | 1.83 | 7.47 | 1.8 | 9.14 | 1.92 | 10.31 | 1.96 | 11.44 | 2.08 | |
400 | 3.32 | 1.42 | 5.21 | 1.67 | 6.12 | 1.68 | 7.84 | 1.89 | 9.28 | 1.88 | 10.27 | 2.04 | |
500 | 2.47 | 1.56 | 4.22 | 1.56 | 5.35 | 1.76 | 7.12 | 1.85 | 8.4 | 1.92 | 9.44 | 1.96 |
P (mW)V | 60 | 80 | 100 | 120 | 140 | 160 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V (µm/s) | D′voxel | DAL | D′voxel | DAL | D′voxel | DAL | D′voxel | DAL | D′voxel | DAL | D′voxel | DAL | |
100 | 1.95 | 1.95 | 2.04 | 2.27 | 2.11 | 2.42 | 2.16 | 2.38 | 2.20 | 2.53 | 2.21 | 2.60 | |
300 | 1.60 | 1.73 | 1.71 | 1.82 | 1.81 | 1.91 | 1.89 | 2.02 | 1.96 | 2.13 | 2.00 | 2.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Chen, Y.; Xu, H.; Chen, J. A Calibration Method for the Resolution of 2D TPP Laser Direct Writing. Micromachines 2023, 14, 212. https://doi.org/10.3390/mi14010212
Xie Y, Chen Y, Xu H, Chen J. A Calibration Method for the Resolution of 2D TPP Laser Direct Writing. Micromachines. 2023; 14(1):212. https://doi.org/10.3390/mi14010212
Chicago/Turabian StyleXie, Yu, Yixiong Chen, Hang Xu, and Jianxiong Chen. 2023. "A Calibration Method for the Resolution of 2D TPP Laser Direct Writing" Micromachines 14, no. 1: 212. https://doi.org/10.3390/mi14010212
APA StyleXie, Y., Chen, Y., Xu, H., & Chen, J. (2023). A Calibration Method for the Resolution of 2D TPP Laser Direct Writing. Micromachines, 14(1), 212. https://doi.org/10.3390/mi14010212