Filtenna with Frequency Reconfigurable Operation for Cognitive Radio and Wireless Applications
Abstract
1. Introduction
2. Second Order BPF Design
3. Antenna with Wide Band Operation
4. The Suggested Filtenna
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirtania, S.G.; Elger, A.W.; Hasan, M.R.; Wisniewska, A.; Sekhar, K.; Karacolak, T.; Sekhar, P.K. Flexible Antennas: A Review. Micromachines 2020, 11, 847. [Google Scholar] [CrossRef] [PubMed]
- Ali, W.A.; Ibrahim, A.A. Tunable band-notched UWB antenna from WLAN to WiMAX with open loop resonators using lumped capacitors. Appl. Comput. Electromagn. Soc. J. 2018, 33, 603–609. [Google Scholar]
- Ibrahim, A.A.; Ahmed, M.I.; Ahmed, M. A systematic investigation of four ports MIMO antenna depending on flexible material for UWB networks. Sci. Rep. 2022, 12, 14351. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, Y.; Wang, W.; Kishk, A.A. A Simple Multi-Broadband Planar Antenna for LTE/GSM/UMTS and WLAN/WiMAX Mobile Handset Applications. IEEE Access 2018, 6, 74453–74461. [Google Scholar] [CrossRef]
- Ibrahim, A.; Ali, W.A.E.; Aboushady, H.; Nasri, A.; Mittra, R.; Ghalib, A.; Hakim, B.; Rmili, H.; Jung, H.; Yun, D.-J.; et al. Performance Evaluation of SDR Blade RF using Wide-band Monopole Antenna for Spectrum Sensing Applications. Appl. Comput. Electromagn. Soc. 2021, 36, 419–424. [Google Scholar] [CrossRef]
- Salamin, M.A.; Ali, W.A.; Das, S.; Zugari, A. Design and investigation of a multi-functional antenna with variable wideband/notched UWB behavior for WLAN/X-band/UWB and Ku-band applications. AEU Int. J. Electron. Commun. 2019, 111, 152895. [Google Scholar] [CrossRef]
- Salamin, M.A.; Ali, W.; Zugari, A. Design and analysis of a miniaturized band-notched planar antenna incorporating a joint DMS and DGS band-rejection technique for UWB applications. Microsyst. Technol. 2018, 25, 3375–3385. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Ali, W.A. High gain, wideband and low mutual coupling AMC-based millimeter wave MIMO antenna for 5G NR networks. AEU Int. J. Electron. Commun. 2021, 142, 153990. [Google Scholar] [CrossRef]
- Mahajan, R.C.; Vyas, V. Wideband microstrip antenna for the detection of solutes in water. Eng. Rep. 2020, 3, e12336. [Google Scholar] [CrossRef]
- Tewary, T.; Maity, S.; Mukherjee, S.; Roy, A.; Sarkar, P.P.; Bhunia, S. High gain miniaturrized super-wideband microstrip patch antenna. Int. J. Commun. Syst. 2022, 35, e5181. [Google Scholar] [CrossRef]
- Ali, W.A.; Mansour, A.M.; Mohamed, D.A. Compact UWB wearable planar antenna mounted on different phantoms and human body. Microw. Opt. Technol. Lett. 2016, 58, 2531–2536. [Google Scholar] [CrossRef]
- Anveshkumar, N.; Mangal, J.; Das, S.; Madhav, B.T.P.; Ali, W.A.E. A low-cost miniaturized flower-shaped printed antenna with enhanced bandwidth for UWB applications. Prog. Electromagn. Res. B 2022, 96, 1–18. [Google Scholar] [CrossRef]
- Chen, X.; Dou, H. Wideband Patch Antenna with Shorting Vias. Int. J. Antennas Propag. 2022, 11, 2578409. [Google Scholar] [CrossRef]
- La Elo, Y.; Zulkifli, F.Y.; Rahardjo, E.T. Design of wideband microstrip antenna with parasitic element for 4G/LTE application. In Proceedings of the 2017 15th International Conference on Quality in Research (QiR): International Symposium on Electrical and Computer Engineering, Nusa Dua, Bali, Indonesia, 24–27 July 2017; pp. 110–113. [Google Scholar]
- Xu, J.; Li, Z.; Pan, X.; Wen, X.; Cao, J.; Gong, W.; Yang, S.; Lei, M.; Yao, F.; Bi, K. Ultra-wideband electrostrictive mechanical antenna. arXiv 2021, arXiv:2112.14969. [Google Scholar] [CrossRef]
- Gupta, N.; Gill, N.; Maniraguha, F. Modeling and Performance Optimization of a Compact Three-Petalled Flower-Like Microstrip Patch Antenna for IoT Applications. Wirel. Commun. Mob. Comput. 2022, 2022, 5995213. [Google Scholar] [CrossRef]
- Abdulkawi, W.M.; Alqaisei, M.A.; Sheta, A.-F.A.; Elshafiey, I. New Compact Antenna Array for MIMO Internet of Things Applications. Micromachines 2022, 13, 1481. [Google Scholar] [CrossRef]
- Elijah, A.A.; Mokayef, M. Miniature microstrip antenna for IoT application. Mater. Today: Proc. 2020, 29, 43–47. [Google Scholar] [CrossRef]
- Colaco, J.; Cotta, J. Design, fabrication and performance analysis of floodlight shaped microstrip antenna for Wi-Fi/IoT applications. Indones. J. Electr. Eng. Comput. Sci. 2022, 27, 1462–1469. [Google Scholar] [CrossRef]
- Jacob, N.; Kulkarni, M. An electronically switchable UWB to narrow band antenna for cognitive radio applications. Microw. Opt. Technol. Lett. 2020, 62, 2989–3001. [Google Scholar] [CrossRef]
- Parida, R.K.; Mishra, R.K.; Sahoo, N.K.; Muduli, A.; Panda, D.C.; Mishra, R.K. A hybrid multi-port antenna system for cognitive radio. Prog. Electromagn. Res. C 2020, 106, 1–16. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Abdullah, A.S. Integrated Spectrum Sensing and Frequency Reconfigurable Antennas for Inter-Weave Cognitive-Radio Applications. J. Physics: Conf. Ser. 2021, 1804, 012053. [Google Scholar] [CrossRef]
- Ali, W.A.E.; Moniem, R.M.A. Frequency reconfigurable triple band-notched ultra-wideband antenna with compact size. Prog. Electromagn. Res. C 2017, 73, 37–46. [Google Scholar] [CrossRef]
- Zugari, A.; Ali, W.A.E.; Salamin, M.A.; Hamham, E.M. Compact Triple/Quadruple-Band Reconfigurable Monopole Antenna for Wireless Applications. J. Circuits, Syst. Comput. 2021, 30, 2150277. [Google Scholar] [CrossRef]
- Awan, W.; Naqvi, S.; Ali, W.; Hussain, N.; Iqbal, A.; Tran, H.; Alibakhshikenari, M.; Limiti, E. Design and Realization of a Frequency Reconfigurable Antenna with Wide, Dual, and Single-Band Operations for Compact Sized Wireless Applications. Electronics 2021, 10, 1321. [Google Scholar] [CrossRef]
- Cleetus, R.M.C.; Bala, G.J. Wide-narrow switchable bands microstrip antenna for cognitive radios. Prog. Electromagn. Res. C 2020, 98, 225–238. [Google Scholar] [CrossRef]
- Amari, S. Synthesis of cross-coupled resonator filters using an analytical gradient-based optimization technique. IEEE Trans. Microw. Theory Tech. 2000, 48, 1559–1564. [Google Scholar] [CrossRef]
- Seyfert, F.; Billa, S. General synthesis techniques for coupled resonator networks. IEEE Microw. Mag. 2007, 8, 98–104. [Google Scholar] [CrossRef]
Ref. | Size (mm2) | Reconfiguration | Substrate | Number of Ports | Bands (GHz) |
---|---|---|---|---|---|
[21] | 80 × 40 | 3 PIN diodes | FR4 (εr = 4.4) | 4 | 3.863, 4.664, 5.2, 5.834, 6.13, 7.355, 8.786 |
[22] | 50 × 70 | 2 PIN diodes | FR4 (εr = 4.4) | 2 | 2, 2.2, 3.25, 3.8, 4.3, 5.6 |
[23] | 20 × 20 | 2 PIN diodes | FR4 (εr = 4.4) | 1 | 3.6, 5.5, 8.1 |
[24] | 30 × 30 | - | FR4 (εr = 4.4) | 1 | 2.37, 4.1, 7, 9.76, 3.5, 7.2, 11.2 |
[25] | 25 × 15 | 2 PIN diodes | FR4 (εr = 4.4) | 1 | 3.5, 3.8, 6.1, 4–7.8 |
[26] | 40 × 40 | 6 MEMS | FR4 (εr = 4.4) | 1 | 5.8, 4, 5.6, 7.2, 7.8 |
proposed | 80 × 80 | 4 Varactor diodes | RO4003 (εr = 3.38) | 1 | 3, 2.8, 2.16,1.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelghany, M.A.; Ali, W.A.E.; Mohamed, H.A.; Ibrahim, A.A. Filtenna with Frequency Reconfigurable Operation for Cognitive Radio and Wireless Applications. Micromachines 2023, 14, 160. https://doi.org/10.3390/mi14010160
Abdelghany MA, Ali WAE, Mohamed HA, Ibrahim AA. Filtenna with Frequency Reconfigurable Operation for Cognitive Radio and Wireless Applications. Micromachines. 2023; 14(1):160. https://doi.org/10.3390/mi14010160
Chicago/Turabian StyleAbdelghany, Mahmoud A., Wael A. E. Ali, Hesham A. Mohamed, and Ahmed A. Ibrahim. 2023. "Filtenna with Frequency Reconfigurable Operation for Cognitive Radio and Wireless Applications" Micromachines 14, no. 1: 160. https://doi.org/10.3390/mi14010160
APA StyleAbdelghany, M. A., Ali, W. A. E., Mohamed, H. A., & Ibrahim, A. A. (2023). Filtenna with Frequency Reconfigurable Operation for Cognitive Radio and Wireless Applications. Micromachines, 14(1), 160. https://doi.org/10.3390/mi14010160