An Annular Fresnel Zone Plate without Central Spots Fabricated by Femtosecond Laser Direct Writing
Abstract
:1. Introduction
2. Theoretical and Experimental Methods
2.1. Theoretical Approach
2.2. Experimental Methods
3. Results and Discussion
3.1. Study of Single-Ring Annular Fresnel Zone Plate (AFZP)
3.2. Study of Double-Ring AFZP
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zeng, D.; Latham, W.P.; Kar, A. Temperature distributions due to annular laser beam heating. J. Laser Appl. 2005, 17, 256–262. [Google Scholar] [CrossRef]
- Zeng, D.; Latham, W.P.; Kar, A. Optical trepanning with a refractive axicon lens system. In Laser Beam Shaping VII; SPIE: Bellingham, WA, USA, 2006; Volume 6290. [Google Scholar]
- Marti, D.; Craig, B.A. Bessel and annular beams for materials processing. Laser Photonics Rev. 2012, 6, 607–621. [Google Scholar]
- Winfield, R.J.; Bhuian, B.; O’Brien, S.; Crean, G.M. Refractive femtosecond laser beam shaping for two-photon polymerization. Appl. Phys. Lett. 2007, 90, 111115. [Google Scholar] [CrossRef]
- Bhuian, B.; Winfield, R.J.; O’Brien, S.; Crean, G.M. Pattern generation using axicon lens beam shaping in two-photon polymerization. Appl. Surf. Sci. 2007, 254, 841–844. [Google Scholar] [CrossRef]
- Nathan, B. Cell imaging: New ways to see a smaller world. Nature 2008, 456, 825–830. [Google Scholar]
- Hell, S.W. Microscopy and its focal switch. Nat. Methods 2009, 6, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.J.; Schulze, S.; Kiravittaya, S.; Mei, Y.; Sanchez, S.; Schmidt, O.G. Lab-in-a-tube: Detection of individual mouse cells for analysis inflexible in flexible split-wall microtube resonator sensors. Nano Lett. 2010, 11, 4037–4042. [Google Scholar] [CrossRef]
- Gaoshan, H.; Yongfeng, M.; Thurmer, D.J.; Coric, E.; Schmidt, O.G. Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells. Lab A Chip 2009, 9, 263–268. [Google Scholar]
- Takei, K.; Kawashima, T.; Kawano, T.; Kaneko, H.; Sawada, K.; Ishida, M. Out-of-plane microtube arrays for drug delivery—liquid flow properties and an application to the nerve block test. Biomed. Microdevices 2009, 11, 539–545. [Google Scholar] [CrossRef]
- Hsu, K.-Y.; Tung, Y.-C.; Chung, M.-H.; Lee, C.-K. Design and Fabrication of Sub-wavelength Annular Apertures for Femtosecond Laser Machining. In Laser-Based Micro- and Nanoprocessing IX; SPIE: Bellingham, WA, USA, 2015. [Google Scholar]
- Liu, W.; Yu, Z.; Lu, D.; Zhang, N. Multi-wavelength annular optical pulses generated by double inter-ferent femtosecond Bessel laser beams in silica glass. Opt. Lasers Eng. 2021, 136, 106330. [Google Scholar] [CrossRef]
- Tung, Y.-C.; Chung, M.-H.; Sung, I.-H.; Lee, C.-K. Design and Fabrication of Sub-wavelength Annular Apertures on Fiber Tip for Femtosecond Laser Machining. In Micromachining and Microfabrication Process Technology XIX; SPIE: Bellingham, WA, USA, 2014. [Google Scholar]
- Arash, S.; Bahar, M. Generation of annular beam by a novel class of Fresnel zone plate. Appl. Opt. 2014, 53, 5995–6000. [Google Scholar]
- Zhang, C.; Hu, Y.; Li, J.; Li, G.; Chu, J.; Huang, W. A rapid two-photon fabrication of tube array using an annular Fresnel lens. Opt. Express 2014, 22, 3983–3990. [Google Scholar] [CrossRef]
- Fatemeh, S.; Arash, S. Coherence combination to create a long depth bifocal diffractive lens capable of generating tailorable biannular and bottle beam. Opt. Quantum Electron. 2021, 53, 144. [Google Scholar]
- Yu, Y.Y.; Chang, C.K.; Lai, M.W.; Huang, L.S.; Lee, C.K. Ablation of silicon by focusing a femtosecond laser through a subwavelength annular aperture structure. In Laser Beam Shaping XI; SPIE: Bellingham, WA, USA, 2010. [Google Scholar]
- Bekshaev, A.; Bliokh, K.Y.; Soskin, M. Internal flows and energy circulation in light beams. J. Opt. 2011, 13, 053001. [Google Scholar] [CrossRef] [Green Version]
- Alexeev, I.; Leitz, K.-H.; Otto, A.; Schmidt, M. Application of Bessel beams for ultrafast laser volume structuring of non transparent media. Phys. Procedia 2010, 5, 533–540. [Google Scholar] [CrossRef] [Green Version]
- Maurer, C.; Jesacher, A.; Bernet, S.; Ritsch-Marte, M. What spatial light modulators can do for optical microscopy. Laser Photonics Rev. 2011, 5, 81–101. [Google Scholar] [CrossRef]
- Beck, R.J.; Parry, J.P.; MacPherson, W.N.; Waddie, A.; Weston, N.J.; Shephard, J.D.; Hand, D.P. Application of cooled spatial light modulator for high power nanosecond laser micromachining. Optics Express 2010, 18, 17059–17065. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; El-Tamer, A.; Hinze, U.; Jiawen, L.; Yanlei, H.; Wenhao, H.; Jiaru, C.; Chichkov, B.N. Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams. Appl. Phys. Lett. 2014, 105, 041110. [Google Scholar] [CrossRef]
- Fang, Z.; Xiaoyan, S.; Hongmin, Z.; Lian, D.; Youwang, H.; Ji’an, D.; Ming, L. Optimization of the focusing characteristics of Fresnel zone plates fabricated with a femtosecond laser. J. Mod. Opt. 2021, 68, 100–107. [Google Scholar]
- Kim, J.; Ha, W.; Park, J.; Kim, J.K.; Sohn, I.B.; Shin, W.; Oh, K. Micro Fresnel Zone Plate Lens Inscribed on a Hard Polymer Clad Fiber Using Femtosecond Pulsed Laser. IEEE Photonics Technol. Lett. 2013, 25, 761–763. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, L.; Liu, Z.; Yang, J. Dual optical tweezers integrated in a four-core fiber: Design and Simulation. In Fourth Asia Pacific Optical Sensors Conference; SPIE: Bellingham, WA, USA, 2013. [Google Scholar]
- Zhang, Y.; Liu, Z.; Yang, J.; Yuan, L. A non-contact single optical fiber multi-optical tweezers probe: Design and fabrication. Opt. Commun. 2012, 285, 4068–4071. [Google Scholar] [CrossRef]
- Arash, S.; Shima, G. Generation of double line focus and 1D non-diffractive beams using phase shifted linear Fresnel zone plate. Opt. Laser Technol. 2015, 69, 65–70. [Google Scholar]
- Bricchi, E.; Mills, J.D.; Kazansky, P.G.; Klappauf, B.G.; Baumberg, J.J. Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining. Opt. Lett. 2002, 27, 2200–2202. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.; Watanabe, W.; Li, Y.; Itoh, K.; Nishii, J. Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses. Opt. Lett. 2004, 29, 1846–1848. [Google Scholar] [CrossRef]
- Wataru, W.; Daisuke, K.; Kazuyoshi, I. Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses. Opt. Express 2002, 10, 978–983. [Google Scholar]
- Delullier, P.; Druart, G.; De La Barrière, F.; Calvez, L.; Lancry, M. Femtosecond Laser Direct Writing of Gradient Index Fresnel Lens in GeS2-Based Chalcogenide Glass for Imaging Applications. Appl. Sci. 2022, 12, 4490. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, F.; Dong, X.; Zhang, F.; Liang, C.; Duan, L.; Hu, Y.; Duan, J.A. Fabrication of GaAs micro-optical components using wet etching assisted femtosecond laser ablation. J. Mod. Opt. 2020, 67, 1516–1523. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Zhou, F.; Duan, L. An Annular Fresnel Zone Plate without Central Spots Fabricated by Femtosecond Laser Direct Writing. Micromachines 2022, 13, 1285. https://doi.org/10.3390/mi13081285
Sun X, Zhou F, Duan L. An Annular Fresnel Zone Plate without Central Spots Fabricated by Femtosecond Laser Direct Writing. Micromachines. 2022; 13(8):1285. https://doi.org/10.3390/mi13081285
Chicago/Turabian StyleSun, Xiaoyan, Fang Zhou, and Lian Duan. 2022. "An Annular Fresnel Zone Plate without Central Spots Fabricated by Femtosecond Laser Direct Writing" Micromachines 13, no. 8: 1285. https://doi.org/10.3390/mi13081285
APA StyleSun, X., Zhou, F., & Duan, L. (2022). An Annular Fresnel Zone Plate without Central Spots Fabricated by Femtosecond Laser Direct Writing. Micromachines, 13(8), 1285. https://doi.org/10.3390/mi13081285