PMCHWT Solver Accelerated by Adaptive Cross Approximation for Efficient Computation of Scattering from Metal Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generic PMCHWT Formulation for a Metal Nanoparticle
2.2. Triangular–Triangular Cyclic Integral Method for Element Calculation of Impedance Matrix
2.3. The Octree Establishes Grouping
2.4. Overview of the Adaptive Cross Approximation (ACA) Algorithm
| Algorithm 1. The detailed process of the ACA algorithm |
Initialization steps:
|
Next, the k th iteration:
|
2.5. ACA Algorithm Accelerates Filling Impedance Matrix
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hedayati, M.K.; Faupel, F.; Elbahri, M. Review of Plasmonic Nanocomposite Metamaterial Absorber. Materials 2014, 7, 1221–1248. [Google Scholar] [CrossRef] [PubMed]
- Hutter, E.; Fendler, J.H. Exploitation of localized surface plasmon resonance. Adv. Mater. 2010, 16, 1685–1706. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370. [Google Scholar] [CrossRef]
- Aizpurua, J.; Hanarp, P.; Sutherland, D.S.; Käll, M.; Bryant, G.W.; García de Abajo, F.J. Optical properties of gold nanorings. Phys. Rev. Lett. 2003, 90, 057401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J. Magnetism from Conductors and Enhanced Nonlinear Phenomena. IEEE Trans. Microw. Theory Tech. 1999, 47, 2075–2084. [Google Scholar] [CrossRef] [Green Version]
- Cantale, V.; Simeone, F.C.; Gambari, R.; Rampi, M.A. Gold nano-islands on FTO as plasmonic nanostructures for biosensors. Sens. Actuators B Chem. 2011, 152, 206–213. [Google Scholar] [CrossRef]
- Watanabe, M.; Sassa, F.; Hayashi, K. Formation of oriented metal nanostructures by polarized light irradiation for optical sensing. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016. [Google Scholar]
- Choy, W.C.H.; Ren, X.G. Plasmon-Electrical Effects on Organic Solar Cells by Incorporation of Metal Nanostructures. IEEE J. Sel. Top. Quantum Electron. 2015, 22, 1–9. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Liu, G.Q.; Huang, S.; Liu, X.S.; Wang, Y.; Liu, M.L.; Gu, G. Enabling Access to the Confined Optical Field to Achieve High-Quality Plasmon Sensing. IEEE Photonics Technol. Lett. 2015, 27, 1212–1215. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Liu, G.Q.; Liu, X.S.; Fu, G.L.; Liu, M.L. Improved Multispectral Antireflection and Sensing of Plasmonic Slits by Silver Mirror. IEEE Photonics Technol. Lett. 2014, 26, 2111–2114. [Google Scholar] [CrossRef]
- Yu, D.M.; Liu, Y.N.; Tian, F.L.; Pan, X.M.; Sheng, X.Q. Accurate thermoplasmonic simulation of metallic nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 2017, 187, 150–160. [Google Scholar] [CrossRef]
- Araújo, M.G.; Taboada, J.M.; Solís, D.M.; Rivero, J.; Landesa, L.; Obelleiro, F. Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers. Opt. Express 2012, 20, 9161–9171. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.N.; Pan, X.M.; Sheng, X.Q. Skeletonization Accelerated MLFMA Solution of Volume Integral Equation for Plasmonic Structures. IEEE Trans. Antennas Propag. 2018, 66, 1590–1594. [Google Scholar] [CrossRef]
- Taboada, J.M.; Rivero, J.; Obelleiro, F.; Araújo, M.G.; Landesa, L. Method-of-moments formulation for the analysis of plasmonic nano-optical antennas. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2011, 28, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Araújo, M.G.; Taboada, J.M.; Rivero, J.; Solís, D.M.; Obelleiro, F. Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm. Opt. Lett. 2012, 37, 416–418. [Google Scholar] [CrossRef] [PubMed]
- Rivero, J.; Taboada, J.M.; Landesa, L.; Obelleiro, F.; Tuñón, I.G. Surface integral equation formulation for the analysis of left-handed metamaterials. Opt. Express 2010, 18, 15876–15886. [Google Scholar] [CrossRef]
- Araújo, M.G.; Taboada, J.M.; Rivero, J.; Solís, D.M.; Obelleiro, F.; Landesa, L. Electromagnetic Analysis of Metamaterials and Plasmonic Nanostructures with the Method of Moments. IEEE Antennas Propag. Mag. 2012, 54, 81–91. [Google Scholar] [CrossRef]
- Gaffar, M.; Jiao, D. An Explicit and Unconditionally Stable FDTD Method for Electromagnetic Analysis. IEEE Trans. Microw. Theory Tech. 2014, 62, 2538–2550. [Google Scholar] [CrossRef]
- Jin, J.M.; Volakis, J.L. A hybrid finite element method for scattering and radiation by microstrip patch antennas and arrays residing in a cavity. IEEE Trans. Antennas Propag. 1991, 39, 1598–1604. [Google Scholar] [CrossRef]
- Harrington, R.F. Field computation by moment methods; Macmillan: London, UK, 1968; ISBN 0780310144. [Google Scholar]
- Umashanker, K.; Taflove, A.; Rao, S.M. Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects. IEEE Trans. Antennas Propag. 1986, 34, 758–766. [Google Scholar] [CrossRef]
- Schaubert, H.; Wilton, D.R.; Glisson, A.W. A tetrahedral modeling method for electromagnetic scattering by arbitrary shaped inhomogeneous dielectric bodies. IEEE Trans. Antennas Propag. 1984, 32, 77–85. [Google Scholar] [CrossRef]
- Kern, A.M.; Martin, O.J.F. Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures. J. Opt. Soc. Am. A 2009, 26, 732–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.K.; Tsai, L.L. Scattering from arbitrarily-shaped lossy dielectric bodies of revolution. Radio Sci. 1977, 12, 709–718. [Google Scholar] [CrossRef]
- Chang, Y.; Harrington, R.F. A surface formulation for characteristic modes of material bodies. IEEE Trans. Antennas Propag. 1977, 25, 789–795. [Google Scholar] [CrossRef] [Green Version]
- Saad, Y. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Entific Comput. 1993, 14, 461–469. [Google Scholar] [CrossRef]
- Raziman, T.V.; Somerville, W.R.C.; Martin, O.J.F.; Ru, E.C.L. Accuracy of surface integral equation matrix elements in plasmonic calculations. J. Opt. Soc. Am. B 2015, 32, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Bebendorf, M. Approximation of boundary element matrices. Numer. Math. 2000, 86, 565–589. [Google Scholar] [CrossRef]
- Zhao, K.Z.; Vouvakis, M.N.; Lee, J.F. The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems. IEEE Trans. Electromagn. Compat. 2005, 47, 763–773. [Google Scholar] [CrossRef]
- Liu, Z.W.; Tang, D.; Zhang, Z.Y.; Zhang, Y.y.; Wang, X.L.; Jie, S.L. Combination of MLFMA and ACA to accelerate computation of scattering from underground targets. Int. J. Antennas Propag. 2019, 2019, 3456871. [Google Scholar] [CrossRef]










| Method | MoM | ACA |
|---|---|---|
| HH polarization calculation time (s) | 42.64 | 28.84 |
| VV polarization calculation time (s) | 42.61 | 28.86 |
| Radius (nm) | 68.25 | 456 | ||
|---|---|---|---|---|
| Method | MoM | ACA | MoM | ACA |
| HH polarization calculation time (s) | 41.30 | 27.90 | 45.22 | 30.37 |
| VV polarization calculation time (s) | 41.19 | 27.47 | 44.61 | 30.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Xi, L.; Bao, Y.; Cheng, Z. PMCHWT Solver Accelerated by Adaptive Cross Approximation for Efficient Computation of Scattering from Metal Nanoparticles. Micromachines 2022, 13, 1086. https://doi.org/10.3390/mi13071086
Liu Z, Xi L, Bao Y, Cheng Z. PMCHWT Solver Accelerated by Adaptive Cross Approximation for Efficient Computation of Scattering from Metal Nanoparticles. Micromachines. 2022; 13(7):1086. https://doi.org/10.3390/mi13071086
Chicago/Turabian StyleLiu, Zhiwei, Longfeng Xi, Yang Bao, and Ziyue Cheng. 2022. "PMCHWT Solver Accelerated by Adaptive Cross Approximation for Efficient Computation of Scattering from Metal Nanoparticles" Micromachines 13, no. 7: 1086. https://doi.org/10.3390/mi13071086
APA StyleLiu, Z., Xi, L., Bao, Y., & Cheng, Z. (2022). PMCHWT Solver Accelerated by Adaptive Cross Approximation for Efficient Computation of Scattering from Metal Nanoparticles. Micromachines, 13(7), 1086. https://doi.org/10.3390/mi13071086

