Controllable Shrinking Fabrication of Solid-State Nanopores
Abstract
:1. Introduction
2. Shrinkage of Nanopore Edge Material Migration
2.1. EB-Induced Material Migration
2.1.1. Amorphous Nanopores
2.1.2. Crystalline Nanopores
2.1.3. Graphene Nanopores
2.1.4. Glass Nanocapillaries
2.2. FIB-Induced Material Migration
2.2.1. Amorphous Nanopores
2.2.2. Other Material
2.3. Other Methods
2.3.1. Laser-Induced Material Migration
2.3.2. Thermal-Heating Induced Material Migration
3. Shrinkage of Nanopore Surface Material Deposition or Growth
3.1. Material Deposition Shrinkage
3.1.1. Atomic Layer Deposition
3.1.2. Vapor Deposition
3.1.3. Ion-Beam Induced Deposition
3.1.4. Electron-Beam Induced Deposition
3.1.5. Electrochemical Deposition
3.2. Thermal Oxidation Shrinkage
4. Recent Solutions for Small-Size Nanopore Fabrication
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kasianowicz, J.J.; Brandin, E.; Branton, D.; Deamer, D.W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 1996, 93, 13770–13773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heerema, S.J.; Vicarelli, L.; Pud, S.; Schouten, R.N.; Zandbergen, H.W.; Dekker, C. Probing DNA translocations with inplane current signals in a graphene nanoribbon with a nanopore. ACS Nano 2018, 12, 2623–2633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakur, A.K.; Movileanu, L. Real-time measurement of protein–protein interactions at single-molecule resolution using a biological nanopore. Nat. Biotechnol. 2019, 37, 96. [Google Scholar] [CrossRef] [PubMed]
- Ouldali, H.; Sarthak, K.; Ensslen, T.; Piguet, F.; Manivet, P.; Pelta, J.; Behrends, J.C.; Aksimentiev, A.; Oukhaled, A. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 2020, 38, 176–181. [Google Scholar] [CrossRef]
- Karawdeniya, B.I.; Bandara, Y.N.D.; Nichols, J.W.; Chevalier, R.B.; Dwyer, J.R. Surveying silicon nitride nanopores for glycomics and heparin quality assurance. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef]
- Nandigana, V.V.R.; Jo, K.; Timperman, A.; Aluru, N.R. Asymmetric-Fluidic-Reservoirs Induced High Rectification Nanofluidic Diode. Sci. Rep. 2018, 8, 13941. [Google Scholar] [CrossRef]
- Xiao, K.; Chen, L.; Chen, R.; Heil, T.; Lemus, S.D.C.; Fan, F.; Wen, L.; Jiang, L.; Antonietti, M. Artificial light-driven ion pump for photoelectric energy conversion. Nat. Commun. 2019, 10, 1–7. [Google Scholar] [CrossRef]
- Shi, W.; Friedman, A.K.; Baker, L.A. Nanopore Sensing. Anal. Chem. 2017, 89, 157–188. [Google Scholar] [CrossRef] [Green Version]
- De la Escosura-Muniz, A.; Merkoci, A. Nanochannels Preparation and Application in Biosensing. Acs Nano 2012, 6, 7556–7583. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, D.; Tian, Y.; Jiang, L. Ion/Molecule Transportation in Nanopores and Nanochannels: From Critical Principles to Diverse Functions. J. Am. Chem. Soc. 2019, 141, 8658–8669. [Google Scholar] [CrossRef]
- Deng, T.; Li, M.; Wang, Y.; Liu, Z. Development of solid-state nanopore fabrication technologies. Sci. Bull. 2015, 60, 304–319. [Google Scholar] [CrossRef]
- Fried, J.P.; Swett, J.L.; Nadappuram, B.P.; Mol, J.A.; Edel, J.B.; Ivanov, A.P.; Yates, J.R. In situ solid-state nanopore fabrication. Chem. Soc. Rev. 2021, 50, 4974–4992. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Yamazaki, H.; Ren, R.; Wanunu, M.; Ivanov, A.P.; Edel, J.B. Solid-state nanopore sensors. Nat. Rev. Mater. 2020, 5, 931–951. [Google Scholar] [CrossRef]
- Perez-Mitta, G.; Toimil-Molares, M.E.; Trautmann, C.; Marmisolle, W.A.; Azzaroni, O. Molecular Design of Solid-State Nanopores: Fundamental Concepts and Applications. Adv. Mater. 2019, 31, e1901483. [Google Scholar] [CrossRef] [PubMed]
- Dekker, C. Solid-state nanopores. Nat. Nanotechnol. 2007, 2, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Tian, Y.; Jiang, L. Asymmetric Ion Transport through Ion-Channel-Mimetic Solid-State Nanopores. Acc. Chem. Res. 2013, 46, 2834–2846. [Google Scholar] [CrossRef]
- Wang, Y.; Di, J.; Wang, L.; Li, X.; Wang, N.; Wang, B.; Tian, Y.; Jiang, L.; Yu, J. Infused-liquid-switchable porous nanofibrous membranes for multiphase liquid separation. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, H.; Li, K.; Heng, L.; Wang, S.; Tian, Y.; Jiang, L. A Bio-inspired Potassium and pH Responsive Double-gated Nanochannel. Adv. Funct. Mater. 2015, 25, 421–426. [Google Scholar] [CrossRef]
- Feng, J.; Graf, M.; Liu, K.; Ovchinnikov, D.; Dumcenco, D.; Heiranian, M.; Nandigana, V.; Aluru, N.R.; Kis, A.; Radenovic, A. Single-layer MoS2 nanopores as nanopower generators. Nature 2016, 536, 197. [Google Scholar] [CrossRef] [Green Version]
- Macha, M.; Marion, S.; Nandigana, V.V.R.; Radenovic, A. 2D materials as an emerging platform for nanopore-based power generation. Nat. Rev. Mater. 2019, 4, 588–605. [Google Scholar] [CrossRef]
- Wen, L.; Zhang, X.; Tian, Y.; Jiang, L. Quantum-confined superfluid: From nature to artificial. Sci. China-Mater. 2018, 61, 1027–1032. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Song, B.; Jiang, L. From Dynamic Superwettability to Ionic/Molecular Superfluidity. Acc. Chem. Res. 2022, 55, 1195–1204. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Stein, D.; McMullan, C.; Branton, D.; Aziz, M.J.; Golovchenko, J.A. Ion-beam sculpting at nanometre length scales. Nature 2001, 412, 166–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, N.; Adams, D.P.; Hodges, V.C.; Vasile, M.J.; Michael, J.R.; Kotula, P.G. Controlled fabrication of nanopores using a direct focused ion beam approach with back face particle detection. Nanotechnology 2008, 19. [Google Scholar] [CrossRef] [PubMed]
- Apel, P.Y.; Korchev, Y.E.; Siwy, Z.; Spohr, R.; Yoshida, M. Diode-like single-ion track membrane prepared by electro-stopping. Nucl. Instrum. Methods Phys. Res. 2001, 184, 337–346. [Google Scholar] [CrossRef]
- Zhang, W.M.; Wang, Y.G.; Li, J.; Xue, J.M.; Ji, H.; Ouyang, Q.; Xu, J.; Zhang, Y. Controllable shrinking and shaping of silicon nitride nanopores under electron irradiation. Appl. Phys. Lett. 2007, 90, 163102. [Google Scholar] [CrossRef]
- Yang, P.S.; Cheng, P.H.; Kao, C.R.; Chen, M.J. Novel Self-shrinking Mask for Sub-3 nm Pattern Fabrication. Sci. Rep. 2016, 6, 29625. [Google Scholar] [CrossRef]
- Orosco, M.M.; Pacholski, C.; Sailor, M.J. Real-time monitoring of enzyme activity in a mesoporous silicon double layer. Nat. Nanotechnol. 2009, 4, 255–258. [Google Scholar] [CrossRef]
- Park, S.R.; Peng, H.; Ling, X.S. Fabrication of nanopores in silicon chips using feedback chemical etching. Small 2010, 3, 116–119. [Google Scholar] [CrossRef]
- Kowalczyk, S.W.; Blosser, T.R.; Dekker, C. Biomimetic nanopores: Learning from and about nature. Trends Biotechnol. 2011, 29, 607–614. [Google Scholar] [CrossRef]
- Kwok, H.; Briggs, K.; Tabard-Cossa, V. Nanopore Fabrication by Controlled Dielectric Breakdown. PLoS ONE 2014, 9, e92880. [Google Scholar]
- Briggs, K.; Kwok, H.; Tabard-Cossa, V. Automated Fabrication of 2-nm Solid-State Nanopores for Nucleic Acid Analysis. Small 2014, 10, 2077–2086. [Google Scholar] [CrossRef] [PubMed]
- Storm, A.J.; Chen, J.H.; Ling, X.S.; Zandbergen, H.W.; Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2003, 2, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, B.M.; Dorvel, B.; Yemenicioglu, S.; Watkins, N.; Petrov, I.; Bashir, R. Highly Sensitive, Mechanically Stable Nanopore Sensors for DNA Analysis. Adv. Mater. 2009, 21, 2771–2776. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Park, S.R.; Ling, X.S. Lithography-free formation of nanopores in plastic membranes using laser heating. Nano Lett. 2006, 6, 2571–2576. [Google Scholar] [CrossRef]
- Asghar, W.; Ilyas, A.; Billo, J.A.; Iqbal, S.M. Shrinking of Solid-state Nanopores by Direct Thermal Heating. Nanoscale Res. Lett. 2011, 6, 372. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Lei, X.; Wang, C. Controllable fabrication of solid state nanopores array by electron beam shrinking. Int. J. Mach. Tools Manuf. 2020, 159. [Google Scholar] [CrossRef]
- Chen, P.; Mitsui, T.; Farmer, D.B.; Golovchenko, J.; Gordon, R.G.; Branton, D. Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Lett. 2004, 4, 1333–1337. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Deng, T.; Chen, Q.; Liang, F.; Liu, Z. Highly efficient shrinkage of inverted-pyramid silicon nanopores by plasma-enhanced chemical vapor deposition technology. Nanotechnology 2016, 27, 254005. [Google Scholar] [CrossRef]
- Aramesh, M.; Forro, C.; Dorwling-Carter, L.; Luchtefeld, I.; Schlotter, T.; Ihle, S.J.; Shorubalko, I.; Hosseini, V.; Momotenko, D.; Zambelli, T.; et al. Localized detection of ions and biomolecules with a force-controlled scanning nanopore microscope. Nat. Nanotechnol. 2019, 14, 791. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, Y.; Cao, F.; Wu, S.; Jia, S.; Cao, A.; Zhao, D.; Wang, J. Electron beam-assisted healing of nanopores in magnesium alloys. Sci. Rep. 2013, 3, 1920. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Li, K.; Li, Z.W.; He, P.Y.; Lin, K.B.; Mo, J.W.; Ma, J. Detection of DNA homopolymer with graphene nanopore. J. Vac. Sci. Technol. B 2019, 37, 8. [Google Scholar] [CrossRef]
- Choi, J.; Lee, C.C.; Park, S. Scalable fabrication of sub-10 nm polymer nanopores for DNA analysis. Microsyst. Nanoeng. 2019, 5, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsson, J.; Lee, J.R.I.; Ratto, T.V.; Letant, S.E. Localized functionalization of single nanopores. Adv. Mater. 2006, 18, 427–431. [Google Scholar] [CrossRef] [Green Version]
- Wei, R.; Pedone, D.; Zuerner, A.; Doeblinger, M.; Rant, U. Fabrication of Metallized Nanopores in Silicon Nitride Membranes for Single-Molecule Sensing. Small 2010, 6, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
- Ayub, M.; Ivanov, A.; Hong, J.; Kuhn, P.; Instuli, E.; Edel, J.B.; Albrecht, T. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing. J. Phys.-Condens. Matter 2010, 22, 454128. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Wanunu, M.; Bell, D.C.; Meller, A. Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis. Adv. Mater. 2006, 18, 3149–3153. [Google Scholar] [CrossRef]
- He, K.; Robertson, A.W.; Gong, C.; Allen, C.S.; Xu, Q.; Zandbergen, H.; Grossman, J.C.; Kirkland, A.I.; Warner, J.H. Controlled formation of closed-edge nanopores in graphene. Nanoscale 2015, 7, 11602–11610. [Google Scholar] [CrossRef]
- Goyal, G.; Lee, Y.B.; Darvish, A.; Ahn, C.W.; Kim, M.J. Hydrophilic and size-controlled graphene nanopores for protein detection. Nanotechnology 2016, 27, 12. [Google Scholar] [CrossRef] [Green Version]
- Steinbock, L.J.; Steinbock, J.F.; Radenovic, A. Controllable Shrinking and Shaping of Glass Nanocapillaries under Electron Irradiation. Nano Lett. 2013, 13, 1717–1723. [Google Scholar] [CrossRef] [Green Version]
- Hoogerheide, D.P.; Golovchenko, J.A. Dynamics of Ion Beam Stimulated Surface Mass Transport to Nanopores. MRS Online Proc. Libr. 2007, 1020, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Aramesh, M.; Mayamei, Y.; Wolff, A.; Ostrikov, K. Superplastic nanoscale pore shaping by ion irradiation. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Cao, F.; Zheng, H.; Sheng, H.; Liu, C.; Liu, Y.; Zhao, D.; Wang, J. Fabrication of faceted nanopores in magnesium. Appl. Phys. Lett. 2013, 103, 243101. [Google Scholar] [CrossRef]
- Storm, A.J.; Chen, J.H.; Ling, X.S.; Zandbergen, H.W.; Dekker, C. Electron-beam-induced deformations of SiO2 nanostructures. J. Appl. Phys. 2005, 98. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.W.; Lee, J.Y.; Oh, D.H.; Kim, T.W.; Cho, W.J. Shrinkage and expansion mechanisms of SiO2 elliptical membrane nanopores. Appl. Phys. Lett. 2008, 93, 221903. [Google Scholar] [CrossRef] [Green Version]
- Qian, H.; Egerton, R.F. Solid-state nanopores of controlled geometry fabricated in a transmission electron microscope. Appl. Phys. Lett. 2017, 111, 193106. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, Q.; Li, Q.; Zhang, H.; You, L.; Zhang, J.; Yu, D. Controlled deformation of Si3N4 nanopores using focused electron beam in a transmission electron microscope. Nanotechnology 2011, 22, 115302. [Google Scholar] [CrossRef]
- Zhang, E.; Yang, L. Microstructure, mechanical properties and bio-corrosion properties of Mg-Zn-Mn-Ca alloy for biomedical application. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Processing 2008, 497, 111–118. [Google Scholar] [CrossRef]
- Li, Z.; Gu, X.; Lou, S.; Zheng, Y. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 2008, 29, 1329–1344. [Google Scholar] [CrossRef]
- Wanunu, M.; Dadosh, T.; Ray, V.; Jin, J.; Mcreynolds, L.; Drndić, M. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 2010, 5, 807. [Google Scholar] [CrossRef]
- Branton, D.; Deamer, D.W.; Marziali, A.; Bayley, H.; Benner, S.A.; Butler, T.; Ventra, M.D.; Garaj, S.; Hibbs, A.; Huang, X. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 2008, 26, 1146–1153. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, B.M.; Bashir, R. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 2011, 6, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merchant, C.A.; Healy, K.; Wanunu, M.; Ray, V.; Peterman, N.; Bartel, J.; Fischbein, M.D.; Venta, K.; Luo, Z.; Johnson, A.T.C.; et al. DNA Translocation through Graphene Nanopores. Nano Lett. 2010, 10, 2915–2921. [Google Scholar] [CrossRef]
- Garaj, S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J.A. Graphene as a subnanometre trans-electrode membrane. Nature 2010, 467, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Schneider, G.F.; Kowalczyk, S.W.; Calado, V.E.; Pandraud, G.; Zandbergen, H.W.; Vandersypen, L.M.K.; Dekker, C. DNA Translocation through Graphene Nanopores. Nano Lett. 2010, 10, 3163–3167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, B.; Schneider, G.F.; Xu, Q.; Pandraud, G.; Dekker, C.; Zandbergen, H. Atomic-Scale Electron-Beam Sculpting of Near-Defect-Free Graphene Nanostructures. Nano Lett. 2011, 11, 2247–2250. [Google Scholar] [CrossRef] [Green Version]
- Steinbock, L.J.; Otto, O.; Chimerel, C.; Gornall, J.; Keyser, U.F. Detecting DNA folding with nanocapillaries. Nano Lett. 2010, 10, 2493. [Google Scholar] [CrossRef]
- Steinbock, L.J.; Otto, O.; Skarstam, D.R.; Jahn, S.; Chimerel, C.; Gornall, J.L.; Keyser, U.F. Probing DNA with micro- and nanocapillaries and optical tweezers. J. Phys. Condens. Matter Inst. Phys. J. 2010, 22, 454113. [Google Scholar] [CrossRef]
- Gao, C.; Ding, S.; Tan, Q.; Gu, L.Q. Method of creating a nanopore-terminated probe for single-molecule enantiomer discrimination. Anal. Chem. 2009, 81, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Steinbock, L.J.; Bulushev, R.D.; Krishnan, S.; Raillon, C.; Radenovic, A. DNA Trans location through Low-Noise Glass Nanopores. Acs Nano 2013, 7, 11255–11262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derek, S.; Jiali, L.; Golovchenko, J.A. Ion-beam sculpting time scales. Phys. Rev. Lett. 2002, 89, 276106. [Google Scholar] [CrossRef] [Green Version]
- Cai, Q.; Ledden, B.; Krueger, E.; Golovchenko, J.A.; Li, J. Nanopore sculpting with noble gas ions. J. Appl. Phys. 2006, 100, 24914–249146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitsui, T.; Stein, D.; Kim, Y.R.; Hoogerheide, D.; Golovchenko, J.A. Nanoscale volcanoes: Accretion of matter at ion-sculpted nanopores. Phys. Rev. Lett. 2006, 96, 036102. [Google Scholar] [CrossRef] [Green Version]
- George, H.B. Ion-Stimulated Mass Transport in Nanoscale Morphology Evolution; Harvard University: Cambridge, MA, USA, 2007. [Google Scholar]
- Kuan, A.T.; Golovchenko, J.A. Nanometer-thin solid-state nanopores by cold ion beam sculpting. Appl. Phys. Lett. 2012, 100, 166–1716. [Google Scholar] [CrossRef] [Green Version]
- Nam, S.W.; Rooks, M.J.; Kim, K.B.; Rossnagel, S.M. Ionic Field Effect Transistors with Sub-10 nm Multiple Nanopores. Nano Lett. 2009, 9, 2044–2048. [Google Scholar] [CrossRef]
- Wu, M.Y.; Chen, P.; Ziese, U.; Alkemade, P.F.A.; Salemink, H.W.M.; Zandbergen, H.W. TEM study of locally coated nanopore fabricated by ion-beam-induced deposition in a thin membrane. Micron 2010, 41, 609–614. [Google Scholar] [CrossRef]
- Wang, H.; Kurata, K.; Fukunaga, T.; Takamatsu, H.; Zhang, X.; Ikuta, T.; Takahashi, K.; Nishiyama, T.; Ago, H.; Takata, Y. A simple method for fabricating free-standing large area fluorinated single-layer graphene with size-tunable nanopores. Carbon 2016, 99, 564–570. [Google Scholar] [CrossRef]
- Danelon, C.; Santschi, C.; Brugger, J.; Vogel, H. Fabrication and functionalization of nanochannels by electron-beam-induced silicon oxide deposition. Langmuir 2006, 22, 10711–10715. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Schmidt, T.; Sangghaleh, F.; Roxhed, N.; Sychugov, I.; Linnros, J. Oxidation of nanopores in a silicon membrane: Self-limiting formation of sub-10nm circular openings. Nanotechnology 2014, 25, 355302. [Google Scholar] [CrossRef] [Green Version]
- Leskela, M.; Ritala, M. Atomic layer deposition chemistry: Recent developments and future challenges. Angew. Chem.-Int. Edit. 2003, 42, 5548–5554. [Google Scholar] [CrossRef] [PubMed]
- De la Torre, R.; Larkin, J.; Singer, A.; Meller, A. Fabrication and characterization of solid-state nanopore arrays for high-throughput DNA sequencing. Nanotechnology 2012, 23, 385308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lepoitevin, M.; Coulon, P.E.; Bechelany, M.; Cambedouzou, J.; Janot, J.-M.; Balme, S. Influence of nanopore surface charge and magnesium ion on polyadenosine translocation. Nanotechnology 2015, 26, 144001. [Google Scholar] [CrossRef] [PubMed]
- Elam, J.W.; Routkevitch, D.; Mardilovich, P.P.; George, S.M. Conformal Coating on Ultrahigh-Aspect-Ratio Nanopores of Anodic Alumina by Atomic Layer Deposition. Chem. Mater. 2003, 15, 3507–3517. [Google Scholar] [CrossRef]
- Sander, M.S.; Cote, M.J.; Gu, W.; Kile, B.M.; Tripp, C.P. Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates. Adv. Mater. 2004, 16, 2052–2057. [Google Scholar] [CrossRef]
- Romero, V.; Vega, V.; Garcia, J.; Zierold, R.; Nielsch, K.; Prida, V.M.; Hernando, B.; Benavente, J. Changes in Morphology and Ionic Transport Induced by ALD SiO2 Coating of Nanoporous Alumina Membranes. Acs Appl. Mater. Interfaces 2013, 5, 3556–3564. [Google Scholar] [CrossRef]
- Shin, H.J.; Jeong, D.K.; Lee, J.G.; Sung, M.M.; Kim, J.Y. Formation of TiO2 and ZrO2 Nanotubes Using Atomic Layer Deposition with Ultraprecise Control of the Wall Thickness. Adv. Mater. 2004, 16, 1197–1200. [Google Scholar] [CrossRef]
- Jeong, D.; Lee, J.; Shin, H.; Lee, J.; Kim, J.; Sung, M. Synthesis of metal-oxide nanotubular structures by using atomic layer deposition on nanotemplates. J. Korean Phys. Soc. 2004, 45, 1249–1252. [Google Scholar]
- Sobel, N.; Hess, C.; Lukas, M.; Spende, A.; Stuehn, B.; Toimil-Molares, M.E.; Trautmann, C. Conformal SiO2 coating of sub-100 nm diameter channels of polycarbonate etched ion-track channels by atomic layer deposition. Beilstein J. Nanotechnol. 2015, 6, 472–479. [Google Scholar] [CrossRef] [Green Version]
- Spende, A.; Sobel, N.; Lukas, M.; Zierold, R.; Riedl, J.C.; Gura, L.; Schubert, I.; Moreno, J.M.M.; Nielsch, K.; Stuehn, B.; et al. TiO2, SiO2, and Al2O3 coated nanopores and nanotubes produced by ALD in etched ion-track membranes for transport measurements. Nanotechnology 2015, 26, 335301. [Google Scholar] [CrossRef] [Green Version]
- Simon, C.A.; Sébastien, B.; Adib Abou, C.; Mikhael, B.; Emmanuel, B.; Jean-Marc, J.; Celine, P.B.; Philippe, M.; Philippe, D. Slow translocation of polynucleotides and their discrimination by α-hemolysin inside a single track-etched nanopore designed by atomic layer deposition. Nanoscale 2013, 5, 9582–9586. [Google Scholar]
- Chen, P.; Gu, J.J.; Brandin, E.; Kim, Y.R.; Wang, Q.; Branton, D. Probing single DNA molecule transport using fabricated nanopores. Nano Lett. 2004, 4, 2293–2298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.-R.; Min, J.; Lee, I.-H.; Kim, S.; Kim, A.-G.; Kim, K.; Namkoong, K.; Ko, C. Nanopore sensor for fast label-free detection of short double-stranded DNAs. Biosens. Bioelectron. 2007, 22, 2926–2931. [Google Scholar] [CrossRef] [PubMed]
- Young, R.J.; Puretz, J. Focused ion beam insulator deposition. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Processing Meas. Phenom. Off. J. Am. Vac. Soc. 1995, 13, 2576–2579. [Google Scholar] [CrossRef]
- Edinger, K.; Melngailis, J.; Orloff, J. Study of precursor gases for focused ion beam insulator deposition. J. Vac. Sci. Technol. B 1998, 16, 3311–3314. [Google Scholar] [CrossRef]
- Giannuzzi, L.A.; Stevie, F.A. Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Chen, Q.; Wang, Y.; Deng, T.; Liu, Z. SEM-induced shrinkage and site-selective modification of single-crystal silicon nanopores. Nanotechnology 2017, 28, 305301. [Google Scholar] [CrossRef]
- Randolph, S.; Fowlkes, J.; Rack, P. Focused, nanoscale electron-beam-induced deposition and etching. Crit. Rev. Solid State Mater. Sci. 2006, 31, 55–89. [Google Scholar] [CrossRef]
- Radenovic, A.; Trepagnier, E.; Csencsits, R.; Downing, K.H.; Liphardt, J. Fabrication of 10 nm diameter hydrocarbon nanopores. Appl. Phys. Lett. 2008, 93, 183101. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.S.; Wen, C.Y.; Li, S.Y.; Chen, X.; Chen, S.; Zhang, S.L.; Zhang, Z. Controlled size reduction and its underlying mechanism to form solid-state nanopores via electron beam induced carbon deposition. Nanotechnology 2019, 30, 455303. [Google Scholar] [CrossRef]
- Deng, T.; Chen, J.; Li, M.; Wang, Y.; Zhao, C.; Zhang, Z.; Liu, Z. Controllable shrinking of inverted-pyramid silicon nanopore arrays by dry-oxygen oxidation. Nanotechnology 2013, 24, 505303. [Google Scholar] [CrossRef]
- Deng, T.; Chen, J.; Si, W.; Yin, M.; Ma, W.; Liu, Z. Fabrication of silicon nanopore arrays using a combination of dry and wet etching. J. Vac. Sci. Technol. B 2012, 30, 061804. [Google Scholar] [CrossRef]
- Cressiot, B.; Greive, S.J.; Mojtabavi, M.; Antson, A.A.; Wanunu, M. Thermostable virus portal proteins as reprogrammable adapters for solid-state nanopore sensors. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Hu, R.; Li, Q.; Lu, W.; Liang, H.; Nan, H.; Lu, J.; Li, J.; Zhao, Q. Oligonucleotide Discrimination Enabled by Tannic Acid-Coordinated Film-Coated Solid-State Nanopores. Langmuir ACS J. Surf. Colloids 2022, 38, 6443–6453. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Xia, Y.; Yang, S.; Alsaid, Y.; Fong, K.Y.; Wang, Y.; Zhang, X. Atomic-scale ion transistor with ultrahigh diffusivity. Science 2021, 372, 501–503. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Nadappuram, B.P.; Cadinu, P.; Zhao, Z.; Xue, L.; Yi, L.; Ren, R.; Wang, J.; Ivanov, A.P.; Edel, J.B. Combined quantum tunnelling and dielectrophoretic trapping for molecular analysis at ultra-low analyte concentrations. Nat. Commun. 2021, 12. [Google Scholar] [CrossRef]
- Zhu, X.; Li, X.; Gu, C.; Ye, Z.; Cao, Z.; Zhang, X.; Jin, C.; Liu, Y. Monolithic Integration of Vertical Thin-Film Transistors in Nanopores for Charge Sensing of Single Biomolecules. Acs Nano 2021, 15, 9882–9889. [Google Scholar] [CrossRef]
- Zhang, P.; Xia, M.; Zhuge, F.; Zhou, Y.; Wang, Z.; Dong, B.; Fu, Y.; Yang, K.; Li, Y.; He, Y.; et al. Nanochannel-Based Transport in an Interfacial Memristor Can Emulate the Analog Weight Modulation of Synapses. Nano Lett. 2019, 19, 4279–4286. [Google Scholar] [CrossRef]
S. No | Shrinking Methods | Materials Tested | Minimum Diameter | Shrinking Precision | Reference |
---|---|---|---|---|---|
1 | EB-induced material migration | SiO2 | 2 nm | 1 nm | [33] |
2 | SiNx | 2 nm | <0.5 nm | [47] | |
3 | Al2O3 | 1 nm | Sub-nanometer | [34] | |
4 | Graphene | 1.4 nm | Nanometer | [48,49] | |
5 | Glass | <10 nm | - | [50] | |
6 | FIB-induced material migration | SiNx | 1.8 nm | - | [23,51] |
7 | Am-AAO | <10 nm | Nanometer | [52] | |
8 | Laser-induced material migration | Plastic | 200 nm | - | [35] |
9 | Thermal-heating induced material migration | SiO2 | ~3 nm | Nanometer | [36] |
S. No | Shrinking Methods | Materials Tested | Minimum Diameter | Shrinking Precision | Reference |
---|---|---|---|---|---|
1 | Atomic layer deposition | Al2O3 on Si3N4 | 1 nm | ~1 Å | [38] |
2 | TiO2 on Si3N4/TiN/Si3N4 | 1~2 nm | ~1 Å | [77] | |
3 | Vapor deposition | Ti/Au on SiNx | ~10 nm | - | [45] |
4 | SiNx on Si | <10 nm | Several nanometers | [39] | |
5 | Ion-beam induced deposition | SiO2 on SiNx | 25 nm | - | [44] |
6 | Pt, Si, C, etc. on SiNx | 5 nm | - | [78] | |
7 | Electron-beam induced deposition | C on graphene | <10 nm | - | [79] |
8 | SiO2 on SiNx | <10 nm | Sub-nanometer | [80] | |
9 | Electrochemical deposition | Pt on SiNx | 18 nm | - | [46] |
10 | Thermal oxidation | SiO2 on Si | 8 nm | Nanometer | [81] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, X.; Zhang, J.; Hong, H.; Yuan, Z.; Liu, Z. Controllable Shrinking Fabrication of Solid-State Nanopores. Micromachines 2022, 13, 923. https://doi.org/10.3390/mi13060923
Lei X, Zhang J, Hong H, Yuan Z, Liu Z. Controllable Shrinking Fabrication of Solid-State Nanopores. Micromachines. 2022; 13(6):923. https://doi.org/10.3390/mi13060923
Chicago/Turabian StyleLei, Xin, Jiayan Zhang, Hao Hong, Zhishan Yuan, and Zewen Liu. 2022. "Controllable Shrinking Fabrication of Solid-State Nanopores" Micromachines 13, no. 6: 923. https://doi.org/10.3390/mi13060923
APA StyleLei, X., Zhang, J., Hong, H., Yuan, Z., & Liu, Z. (2022). Controllable Shrinking Fabrication of Solid-State Nanopores. Micromachines, 13(6), 923. https://doi.org/10.3390/mi13060923