Shape, Resonant Frequency and Thermoelastic Dissipation Analysis of Free-Formed Microhemispherical Shells Based on Forming Process Modeling
Abstract
:1. Introduction
2. Analysis of the Blowing Mechanism of Free-Form Microhemispherical Shells
- pressurizing the inside of the cavity, such as using a foaming agent;
- decompressing the outside of the cavity, such as pumping.
- (a)
- Masking.
- (b)
- Etching annular grooves in the substrate.
- (c)
- Bonding the device layer to the substrate layer. For methods using a foaming agent, add the foaming agent prior to this step.
- (d)
- Heating and foaming. For methods using external pumping, pumping is performed before this step.
- (e)
- Releasing the microhemispherical shell by laser or lapping.
3. Influence of Key Preforming Parameters on the Shape of Microhemispherical Shells
- Boundary 1: External pressure of cavity.
- Boundary 2: Real-time pressure inside the cavity.
- Boundary 3: Symmetry axis, specify r displacement as 0.
- Boundary 4: Fixed boundaries.
4. Simulation Analysis of Resonant Frequency of Microhemispherical Shell
5. Simulation Analysis of Thermoelastic Dissipation of Microhemispherical Shell
- When increases from 0.5 mm to 1.0 mm for mm, 4 mm and 4.5 mm, the decreases by 108.8 million, 113.6 million and 128.7 million, respectively;
- When h increases from 0.2 mm to 0.4 mm for mm, 4 mm and 4.5 mm, the increases by 616.2 million, 619.1 million and 636.6 million, respectively;
- When increases from 0.2 mm to 0.5 mm for mm, 4 mm and 4.5 mm, the decreases by 385.3 million, 330.0 million and 325.9 million, respectively;
- When increases from 7 to 13 for mm, 4 mm and 4.5 mm, the decreases by 386.1 million, 336.6 million and 254.5 million, respectively.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rozelle, D.M. The hemispherical resonator gyro: From wineglass to the planets. Adv. Astronaut. Sci. 2013, 134, 1157–1178. [Google Scholar]
- Asadian, M.H.; Wang, D.; Wang, Y.; Shkel, A.M. 3D Dual-Shell Micro-Resonators for Harsh Environments. In Proceedings of the 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, OR, USA, 20–23 April 2020; pp. 1467–1471. [Google Scholar]
- Cho, J.Y.; Woo, J.K.; He, G.; Yang, D.; Boyd, C.; Singh, S.; Darvishian, A.; Shiari, B.; Najafi, K. 1.5-Million Q-Factor Vacuum-Packaged Birdbath Resonator Gyroscope (BRG). In Proceedings of the 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Korea, 27–31 January 2019; pp. 210–213. [Google Scholar]
- Singh, S.; Darvishian, A.; Cho, J.Y.; Shiari, B.; Najafi, K. High-Q 3D Micro-Shell Resonator with High Shock Immunity and Low Frequency Mismatch for MEMS Gyroscopes. In Proceedings of the 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Korea, 27–31 January 2019; pp. 668–671. [Google Scholar]
- Dastjerdi, S.; Akgöz, B.; Civalek, Ö. On the Effect of Viscoelasticity on Behavior of Gyroscopes. Int. J. Eng. Sci. 2020, 149, 103236. [Google Scholar] [CrossRef]
- Shao, P.; Tavassoli, V.; Mayberry, C.L.; Ayazi, F. A 3D-HARPSS Polysilicon Microhemispherical Shell Resonating Gyroscope: Design, Fabrication, and Characterization. IEEE Sens. J. 2015, 15, 4974–4985. [Google Scholar] [CrossRef]
- Zhuang, X.; Wang, X.; Yu, L.; Li, P.; Chen, B.; Guo, Q.; Guo, S. Micromachined Silicon Hemispherical Resonators with Self-Aligned Spherical Capacitive Electrodes. In Proceedings of the 2015 IEEE SENSORS, Busan, Korea, 1–4 November 2015; pp. 1–4. [Google Scholar]
- Cho, J.Y.; Singh, S.; Woo, J.K.; He, G.; Najafi, K. 0.00016 Deg/√hr Angle Random Walk (ARW) and 0.0014 Deg/Hr Bias Instability (BI) from a 5.2M-Q and 1-Cm Precision Shell Integrating (PSI) Gyroscope. In Proceedings of the 2020 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Hiroshima, Japan, 23–26 March 2020; pp. 1–4. [Google Scholar]
- Shi, Y.; Lu, K.; Li, B.; Chen, Y.; Xi, X.; Wu, Y.; Wu, X.; Xiao, D. Micro Hemispherical Resonators with Quality Factor of 1.18 Million Fabricated Via Laser Ablation. In Proceedings of the 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), Gainesville, FL, USA, 25–29 January 2021; pp. 6–9. [Google Scholar]
- Wang, Y.; Asadian, M.H.; Shkel, A.M. Compensation of Frequency Split by Directional Lapping in Fused Quartz Micro Wineglass Resonators. J. Micromech. Microeng. 2018, 28, 95001. [Google Scholar] [CrossRef] [Green Version]
- Luo, B.; Shang, J.; Zhang, Y. Hemipherical Wineglass Shells Fabricated by a Chemical Foaming Process. In Proceedings of the 2015 16th International Conference on Electronic Packaging Technology (ICEPT), Changsha, China, 11–14 August 2015; pp. 951–954. [Google Scholar]
- Darvishian, A.; Nagourney, T.; Cho, J.Y.; Shiari, B.; Najafi, K. Thermoelastic Dissipation in Micromachined Birdbath Shell Resonators. J. Microelectromech. Syst. 2017, 26, 758–772. [Google Scholar] [CrossRef]
- Nayfeh, A.; Younis, M. Modeling and Simulations of Thermoelastic Damping in Microplates. J. Micromech. Microeng. 2004, 14, 1711. [Google Scholar] [CrossRef]
- Candler, R.; Duwel, A.; Varghese, M.; Chandorkar, S.; Hopcroft, M.; Park, W.T.; Kim, B.; Yama, G.; Partridge, A.; Lutz, M.; et al. Impact of Geometry on Thermoelastic Dissipation in Micromechanical Resonant Beams. J. Microelectromech. Syst. 2006, 15, 927–934. [Google Scholar] [CrossRef] [Green Version]
- Duwel, A.; Candler, R.N.; Kenny, T.W.; Varghese, M. Engineering MEMS Resonators with Low Thermoelastic Damping. J. Microelectromech. Syst. 2006, 15, 1437–1445. [Google Scholar] [CrossRef]
- Ghaffari, S.; Ng, E.J.; Ahn, C.H.; Yang, Y.; Wang, S.; Hong, V.A.; Kenny, T.W. Accurate Modeling of Quality Factor Behavior of Complex Silicon MEMS Resonators. J. Microelectromech. Syst. 2015, 24, 276–288. [Google Scholar] [CrossRef]
- Hossain, S.T.; McWilliam, S.; Popov, A.A. An Investigation on Thermoelastic Damping of High-Q Ring Resonators. Int. J. Mech. Sci. 2016, 106, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Shiari, B.; Nagourney, T.; Darvishian, A.; Cho, J.Y.; Najafi, K. Numerical Study of Impact of Surface Roughness on Thermoelastic Loss of Micro-Resonators. In Proceedings of the 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Kauai, HI, USA, 27–30 March 2017; pp. 74–77. [Google Scholar]
- Darvishian, A.; Shiari, B.; Cho, J.Y.; Nagourney, T.; Najafi, K. Investigation of thermoelastic loss mechanism in shell resonators. In Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, QC, Canada, 14–20 November 2014; Volume 46590, p. V010T13A062. [Google Scholar]
- Luo, B.; Shang, J.; Zhang, Y. Hemispherical Glass Shell Resonators Fabricated Using Chemical Foaming Process. In Proceedings of the 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 26–29 May 2015; pp. 2217–2221. [Google Scholar]
- Asadian, M.H.; Wang, Y.; Askari, S.; Shkel, A. Controlled Capacitive Gaps for Electrostatic Actuation and Tuning of 3D Fused Quartz Micro Wineglass Resonator Gyroscope. In Proceedings of the 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Kauai, HI, USA, 27–30 March 2017; pp. 1–4. [Google Scholar]
- Asadian, M.; Wang, Y.; Shkel, A. Design and Fabrication of 3D Fused Quartz Shell Resonators for Broad Range of Frequencies and Increased Decay Time. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018. [Google Scholar]
- Ermakov, R.; Skripal, E.; Kondratov, D.; L’Vov, A.; Seranova, A.; Gutsevich, D. Development of a Vibrational Error Model of a Hemispherical Resonator Gyroscope. In Proceedings of the 2018 25th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), St. Petersburg, Russia, 28–30 May 2018; pp. 1–3. [Google Scholar]
- Zhuravlev, V. Temperature Drift of a Hemispherical Resonator Gyro (HRG). Mech. Solids 2018, 53, 241–248. [Google Scholar] [CrossRef]
- Bryan, G.H. On the beats in the vibrations of a revolving cylinder or bell. Proc. Camb. Philos. Soc. 1980, 7, 101–111. [Google Scholar]
- Zhuravlev, V.; Klimov, D.M. The Solid State Wave Gyroscope; Nauka: Moscow, Russia, 1985. (In Russian) [Google Scholar]
- Xiao, D.; Li, W.; Hou, Z.; Lu, K.; Shi, Y.; Wu, Y.; Wu, X. Fused Silica Micro Shell Resonator with T-Shape Masses for Gyroscopic Application. J. Microelectromech. Syst. 2017, 27, 47–58. [Google Scholar] [CrossRef]
- Singh, S.; Nagourney, T.; Cho, J.; Darvishian, A.; Najafi, K.; Shiari, B. Design and Fabrication of High-Q Birdbath Resonator for MEMS Gyroscopes. In Proceedings of the 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 23–26 April 2018; pp. 15–19. [Google Scholar]
- Senkal, D.; Ahamed, M.; Asadian, M.; Askari, S.; Shkel, A. Demonstration of 1 Million Q -Factor on Microglassblown Wineglass Resonators With Out-of-Plane Electrostatic Transduction. J. Microelectromech. Syst. 2015, 24, 29–37. [Google Scholar] [CrossRef]
- Nagourney, T.; Cho, J.; Shiari, B.; Darvishian, A.; Najafi, K. 259 Second Ring-down Time and 4.45 Million Quality Factor in 5.5 kHz Fused Silica Birdbath Shell Resonator. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 790–793. [Google Scholar]
- Lake, J.J. Advances in Thermoelastic Dissipation and Anchor Loss in MEMS Resonators. Ph.D. Thesis, University of California, Los Angeles, CA, USA, 2015. [Google Scholar]
Parameter | Value | Unit |
---|---|---|
Young’s modulus | 70 | GPa |
Poisson’s ratio | 0.17 | – |
Density | 2200 | kg/m3 |
Thermal conductivity | 1.4 | W/(m·K) |
Specific heat capacity | 730 | J/(kg × K) |
Coefficient of thermal expansion | 1/K |
Parameter | Value | Unit |
---|---|---|
depth of the annular groove () | 0.3 | mm |
inner diameter of the annular groove () | 0.5 | mm |
outer diameter of the annular groove () | 3.5 | mm |
pressure ratio of the annular groove () | 10 | – |
thickness of device layer (h) | 0.3 | mm |
7 | 9 | 11 | 13 | |
---|---|---|---|---|
Shape | | | | |
(mm) | 2.002 | 2.711 | 3.281 | 3.787 |
320.4 | 288.4 | 282.2 | 273.1 | |
169.5 | 176.8 | 182.3 | 180.8 | |
211.8 | 192.9 | 185.4 | 175.9 | |
160.9 | 133.6 | 119.0 | 105.8 |
(mm) | 0.2 | 0.3 | 0.4 | 0.5 |
---|---|---|---|---|
Shape | | | | |
(mm) | 2.003 | 3.007 | 3.788 | 4.368 |
321.9 | 285.6 | 274.0 | 271.5 | |
167.9 | 181.9 | 181.3 | 181.5 | |
211.0 | 189.7 | 175.8 | 172.0 | |
161.9 | 127.4 | 104.5 | 96.2 |
(mm) | 0.5 | 0.6 | 0.7 | 0.8 |
---|---|---|---|---|
Shape | | | | |
(mm) | 3.007 | 2.869 | 2.738 | 2.618 |
285.6 | 375.8 | 471.5 | 564.6 | |
181.9 | 177.3 | 172.1 | 172.2 | |
189.7 | 187.1 | 184.4 | 185.0 | |
127.4 | 124.5 | 122.6 | 122.2 |
h (mm) | 0.22 | 0.26 | 0.30 | 0.34 |
---|---|---|---|---|
Shape | | | | |
(mm) | 3.056 | 3.029 | 3.007 | 3.006 |
270.2 | 283.1 | 285.6 | 272.5 | |
93.3 | 131.3 | 181.9 | 246.1 | |
127.5 | 155.9 | 189.7 | 229.3 | |
91.1 | 108.6 | 127.4 | 143.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Zhang, J.; Ruan, Z.; Meng, L.; Jia, J. Shape, Resonant Frequency and Thermoelastic Dissipation Analysis of Free-Formed Microhemispherical Shells Based on Forming Process Modeling. Micromachines 2022, 13, 913. https://doi.org/10.3390/mi13060913
Gao Y, Zhang J, Ruan Z, Meng L, Jia J. Shape, Resonant Frequency and Thermoelastic Dissipation Analysis of Free-Formed Microhemispherical Shells Based on Forming Process Modeling. Micromachines. 2022; 13(6):913. https://doi.org/10.3390/mi13060913
Chicago/Turabian StyleGao, Yang, Jiachao Zhang, Zhihu Ruan, Lin Meng, and Jia Jia. 2022. "Shape, Resonant Frequency and Thermoelastic Dissipation Analysis of Free-Formed Microhemispherical Shells Based on Forming Process Modeling" Micromachines 13, no. 6: 913. https://doi.org/10.3390/mi13060913
APA StyleGao, Y., Zhang, J., Ruan, Z., Meng, L., & Jia, J. (2022). Shape, Resonant Frequency and Thermoelastic Dissipation Analysis of Free-Formed Microhemispherical Shells Based on Forming Process Modeling. Micromachines, 13(6), 913. https://doi.org/10.3390/mi13060913