Editorial for the Special Issue “MEMS Packaging Technologies and 3D Integration”
Conflicts of Interest
References
- Lee, B.; Seok, S.; Chun, K. A study on wafer level vacuum packaging for MEMS devices. J. Micromech. Microeng. 2003, 13, 663–669. [Google Scholar] [CrossRef]
- Cherniak, G.; Avraham, M.; Bar-Lev, S.; Golan, G.; Nemirovsky, Y. Study of the Absorption of Electromagnetic Radiation by 3D, Vacuum-Packaged, Nano-Machined CMOS Transistors for Uncooled IR Sensing. Micromachines 2021, 12, 563. [Google Scholar] [CrossRef] [PubMed]
- Santagata, F.; Zaal, J.J.M.; Huerta, V.G.; Mele, L.; Creemer, J.F.; Sarro, P.M. Mechanical Design and Characterization for MEMS Thin-Film Packaging. J. Microelectromech. Syst. 2012, 21, 100–109. [Google Scholar] [CrossRef]
- Zekry, J.; Tezcan, D.S.; Celis, J.-P.; Puers, R.; van Hoof, C.; Tilmans, H.A.C. Wafer-level thin film vacuum packages for MEMS using nanoporous anodic alumina membranes. In Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Beijing, China, 5–9 June 2011; pp. 974–977. [Google Scholar]
- Lee, B.-K.; Choi, D.-H.; Yoon, J.-B. Use of nanoporous columnar thin film in the wafer-level packaging of MEMS devices. J. Micromech. Microeng. 2010, 20, 045002. [Google Scholar] [CrossRef]
- Seok, S.; Rolland, N.; Rolland, P.-A. Packaging methodology for RF devices using a BCB membrane transfer technique. J. Micromech. Microeng. 2006, 16, 2384–2388. [Google Scholar] [CrossRef]
- Kim, J.-G.; Seok, S.; Rolland, N.; Rolland, P.-A. Polymer-based zero-level packaging technology for high frequency RF applications by wafer bonding/debonding technique using an anti-adhesion layer. Int. J. Precis. Eng. Manuf. 2012, 13, 1861–1867. [Google Scholar] [CrossRef]
- Bower, R.W.; Ismail, M.S.; Roberds, B.E. Low temperature Si3N4 direct bonding. Appl. Phys. Lett. 1993, 62, 3485–3487. [Google Scholar] [CrossRef]
- Bourim, E.-M.; Kang, I.-S.; Kim, H.Y. Investigation of Integrated Reactive Multilayer Systems for Bonding in Microsystem Technology. Micromachines 2021, 12, 1272. [Google Scholar] [CrossRef]
- Lee, J.-H.; Li, P.-K.; Hung, H.-W.; Chuang, W.; Schellkes, E.; Yasuda, K.; Song, J.-M. Geometrical Effects on Ultrasonic Al Bump Direct Bonding for Microsystem Integration: Simulation and Experiments. Micromachines 2021, 12, 750. [Google Scholar] [CrossRef]
- Yamamoto, M.; Matsumae, T.; Kurashima, Y.; Takagi, H.; Suga, T.; Takamatsu, S.; Itoh, T.; Higurashi, E. Effect of Au Film Thickness and Surface Roughness on Room-Temperature Wafer Bonding and Wafer-Scale Vacuum Sealing by Au-Au Surface Activated Bonding. Micromachines 2020, 11, 454. [Google Scholar] [CrossRef]
- Seok, S.; Fryziel, M.; Rolland, N.; Rolland, P.-A. Enhancement of bonding strength of packaging based on BCB bonding for RF devices. Microsyst. Technol. 2012, 18, 2035–2039. [Google Scholar] [CrossRef]
- Seok, S. Fabrication and Modeling of Nitride Thin-Film Encapsulation Based on Anti-Adhesion-Assisted Transfer Technique and Nitride/BCB Bilayer Wrinkling. In Proceedings of the 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 31 May–3 June 2016; pp. 1301–1307. [Google Scholar]
- Ayhan, A.O.; Nied, H.F. Finite element analysis of interface cracking in semiconductor packages. IEEE Trans. Components Packag. Technol. 1999, 22, 503–511. [Google Scholar] [CrossRef]
- Wang, P.-H.; Huang, Y.-W.; Chiang, K.-N. Reliability Evaluation of Fan-Out Type 3D Packaging-On-Packaging. Micromachines 2021, 12, 295. [Google Scholar] [CrossRef] [PubMed]
- Lee, Q.-Y.; Lee, M.-X.; Lee, Y.-C. A Hybrid Fuzzy Decision Model for Evaluating MEMS and IC Integration Technologies. Micromachines 2021, 12, 276. [Google Scholar] [CrossRef]
- Jiang, B.; Huang, S.; Zhang, J.; Su, Y. Analysis of Frequency Drift of Silicon MEMS Resonator with Temperature. Micromachines 2021, 12, 26. [Google Scholar] [CrossRef]
- Seok, S.; Rolland, N.; Rolland, P.-A. A theoretical and experimental study of the BCB thin-film cap zero-level package based on FEM simulations. J. Micromech. Microeng. 2010, 20, 095010. [Google Scholar] [CrossRef]
- Fischer, A.C.; Forsberg, F.; Lapisa, M.; Bleiker, S.J.; Stemme, G.; Roxhed, N.; Niklaus, F. Integrating MEMS and ICs. Microsyst. Nanoeng. 2015, 1, 15005. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Fang, M.; Shi, L.; Gu, Y.; Chen, Z.; Zhu, W. Characteristics of Cracking Failure in Microbump Joints for 3D Chip-on-Chip Interconnections under Drop Impact. Micromachines 2022, 13, 281. [Google Scholar] [CrossRef]
- Wang, M.; Ma, S.; Jin, Y.; Wang, W.; Chen, J.; Hu, L.; He, S. A RF Redundant TSV Interconnection for High Resistance Si Interposer. Micromachines 2021, 12, 169. [Google Scholar] [CrossRef]
- Roshanghias, A.; Dreissigacker, M.; Scherf, C.; Bretthauer, C.; Rauter, L.; Zikulnig, J.; Braun, T.; Becker, K.-F.; Rzepka, S.; Schneider-Ramelow, M. On the Feasibility of Fan-Out Wafer-Level Packaging of Capacitive Micromachined Ultrasound Transducers (CMUT) by Using Inkjet-Printed Redistribution Layers. Micromachines 2020, 11, 564. [Google Scholar] [CrossRef]
- Wu, C.; Liu, J.; Yeung, N. The effects of bump height on the reliability of ACF in flip-chip. Solder. Surf. Mt. Technol. 2001, 13, 25–30. [Google Scholar] [CrossRef]
- Glavin, N.R.; Muratore, C.; Snure, M. Toward 2D materials for flexible electronics: Opportunities and outlook. Oxf. Open Mater. Sci. 2020, 1, itaa002. [Google Scholar] [CrossRef]
- Park, H.; Choi, W.; Oh, S.; Kim, Y.-J.; Seok, S.; Kim, J. A Study on Biocompatible Polymer-Based Packaging of Neural Interface for Chronic Implantation. Micromachines 2022, 13, 516. [Google Scholar] [CrossRef] [PubMed]
- Seok, S.; Park, H.; Kim, J. Characterization and Analysis of Metal Adhesion to Parylene Polymer Substrate Using Scotch Tape Test for Peripheral Neural Probe. Micromachines 2020, 11, 605. [Google Scholar] [CrossRef] [PubMed]
- Hassler, C.; von Metzen, R.P.; Ruther, P.; Stieglitz, T. Characterization of parylene C as an encapsulation material for implanted neural prostheses. J. Biomed. Mater. Res. Part B 2010, 93, 266–274. [Google Scholar] [CrossRef]
- Kramar, T.; Michalec, I.; Kovacocy, P. The laser beam welding of titanium grade 2 alloy. GRANT J. 2012, 1, 77–79. [Google Scholar]
- Schuettler, M.; Ordonez, J.S.; Santisteban, T.S.; Schatz, A.; Wilde, J.; Stieglitz, T. Fabrication and test of a hermetic miniature implant package with 360 electrical feedthroughs. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; Volume 2010, pp. 1585–1588. [Google Scholar]
- Chlebowski, A.L.; Chow, E.Y.; Ellison, C.; Irazoqui, P.P. Integrated LTCC packaging for use in biomedical devices. Bio-Med. Mater. Eng. 2012, 22, 361–372. [Google Scholar] [CrossRef]
- Seok, S. Polymer-Based Biocompatible Packaging for Implantable Devices: Packaging Method, Materials, and Reliability Simulation. Micromachines 2021, 12, 1020. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seok, S. Editorial for the Special Issue “MEMS Packaging Technologies and 3D Integration”. Micromachines 2022, 13, 749. https://doi.org/10.3390/mi13050749
Seok S. Editorial for the Special Issue “MEMS Packaging Technologies and 3D Integration”. Micromachines. 2022; 13(5):749. https://doi.org/10.3390/mi13050749
Chicago/Turabian StyleSeok, Seonho. 2022. "Editorial for the Special Issue “MEMS Packaging Technologies and 3D Integration”" Micromachines 13, no. 5: 749. https://doi.org/10.3390/mi13050749
APA StyleSeok, S. (2022). Editorial for the Special Issue “MEMS Packaging Technologies and 3D Integration”. Micromachines, 13(5), 749. https://doi.org/10.3390/mi13050749