Next Article in Journal
Path Planning Algorithm for Multi-Locomotion Robot Based on Multi-Objective Genetic Algorithm with Elitist Strategy
Previous Article in Journal
Spectral Interferometry with Frequency Combs
Previous Article in Special Issue
Integrated Fabrication of Novel Inkjet-Printed Silver Nanoparticle Sensors on Carbon Fiber Reinforced Nylon Composites
 
 
Article

The Effect of Ink Supply Pressure on Piezoelectric Inkjet

1
Department of Smart Fab. Technology, Sungkyunkwan University, Suwon 16419, Korea
2
School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea
*
Authors to whom correspondence should be addressed.
Academic Editor: Ryan Donnelly
Micromachines 2022, 13(4), 615; https://doi.org/10.3390/mi13040615
Received: 29 March 2022 / Revised: 12 April 2022 / Accepted: 12 April 2022 / Published: 14 April 2022
(This article belongs to the Special Issue Recent Advances in Inkjet Technology)
Experimental and numerical analysis of the drop-on-demand inkjet was conducted to determine the jetting characteristics and meniscus motion under the control of the ink supply pressure. A single transparent nozzle inkjet head driven by a piezoelectric actuator was used to eject droplets. To control ink supply pressure, the pressure of the air in the reservoir was regulated by a dual valve pressure controller. The inkjet performance and the motion of the meniscus were evaluated by visualization and numerical simulation. A two-dimensional axisymmetric numerical simulation with the dynamic mesh method was performed to simulate the inkjet dynamics, including the actual deformation of the piezoelectric actuator. Numerical simulation showed good agreement with the experimental results of droplet velocity and volume with an accuracy of 87.1%. Both the experimental and simulation results showed that the drop volume and velocity were linearly proportional to the voltage change. For the specific voltages, an analysis of the effect of the ink supply pressure control was conducted. At the maximum negative pressure, −3 kPa, the average velocity reductions were 0.558 and 0.392 m/s in the experiment and simulation, respectively, which were 18.7 and 11.6% less than those of the uncontrolled case of 0 kPa. Therefore, the simulation environment capable of simulating the entire inkjet dynamics, including meniscus movement regarded to be successfully established. The average volume reductions were 18.7 and 6.97 pL for the experiment and simulation, respectively, which were 21.7 and 9.17% less than those of the uncontrolled case. In the results of the meniscus motion simulation, the damping of the residual vibration agreed well with the experimental results according to the ink supply pressure change. Reducing the ink supply pressure reduced the speed and volume, improved the damping of residual vibrations, and suppressed satellite drops. Decreasing ink supply pressure can be expected to improve the stability and productivity of inkjet printing. View Full-Text
Keywords: piezoelectric inkjet; ink supply pressure control; inkjet meniscus damping; inkjet dynamics simulation; inkjet visualization piezoelectric inkjet; ink supply pressure control; inkjet meniscus damping; inkjet dynamics simulation; inkjet visualization
Show Figures

Figure 1

MDPI and ACS Style

Kim, S.; Choi, J.H.; Sohn, D.K.; Ko, H.S. The Effect of Ink Supply Pressure on Piezoelectric Inkjet. Micromachines 2022, 13, 615. https://doi.org/10.3390/mi13040615

AMA Style

Kim S, Choi JH, Sohn DK, Ko HS. The Effect of Ink Supply Pressure on Piezoelectric Inkjet. Micromachines. 2022; 13(4):615. https://doi.org/10.3390/mi13040615

Chicago/Turabian Style

Kim, San, Jun Hyeok Choi, Dong Kee Sohn, and Han Seo Ko. 2022. "The Effect of Ink Supply Pressure on Piezoelectric Inkjet" Micromachines 13, no. 4: 615. https://doi.org/10.3390/mi13040615

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop