Human–Machine Multi-Turn Language Dialogue Interaction Based on Deep Learning
Abstract
:1. Introduction
2. Related Work
3. Coding Model for Multi-Turn Dialogue
3.1. Context Semantic Encoding Model
3.1.1. PBTG Context Semantic Coding Model
3.1.2. Context Semantic Encoding Structure of 3EAG Model
3.2. Encoder Network Model
3.2.1. PBTG Network Model
3.2.2. EAG Network Model
4. Experiments
4.1. The Data Set
4.2. Experimental Parameters and Results Analysis
4.2.1. Experimental Parameters
4.2.2. Results Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, H.; Liu, X.; Yin, D.; Tang, J. A survey on dialogue systems: Recent advances and new frontiers. ACM SIGKDD Explor. Newsl. 2017, 19, 25–35. [Google Scholar] [CrossRef]
- Ritter, A.; Cherry, C.; Dolan, W.B. Data-Driven Response Generation in Social Media. In Proceedings of the Empirical Methods in Natural Language Processing, EMNLP 2011, Edinburgh, UK, 27–31 July 2011; Association for Computational Linguistics (ACL): Edinburgh, UK, 2011; pp. 583–593. [Google Scholar]
- Xiang, Z.; Yan, J.; Demir, I. A rainfall-runoff model with LSTM-based sequence-to-sequence learning. Water Resour. Res. 2020, 56, e2019WR025326. [Google Scholar] [CrossRef]
- Liu, X.; Wang, L.; Wong, D.F.; Ding, L.; Chao, L.S.; Tu, Z. Understanding and improving encoder layer fusion in sequence-to-sequence learning. arXiv 2020, arXiv:14768. [Google Scholar]
- Lee, S.; Lim, D.-E.; Kang, Y.; Kim, H.J. Clustered Multi-Task Sequence-to-Sequence Learning for Autonomous Vehicle Repositioning. IEEE Access 2021, 9, 14504–14515. [Google Scholar] [CrossRef]
- Sun, X.; Ding, B. Neural Network with Hierarchical Attention Mechanism for Contextual Topic Dialogue Generation. IEEE Access 2022, 10, 4628–4639. [Google Scholar] [CrossRef]
- Qu, C.; Yang, L.; Qiu, M.; Croft, W.B.; Zhang, Y.; Lyyer, M. BERT with History Answer Embedding for Conversational Question Answering. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019, Paris, France, 21–25 July 2019; Association for Computing Machinery: Paris, France, 2019; pp. 1133–1136. [Google Scholar]
- Li, J.; Galley, M.; Brockett, C.; Spithourakis, G.P.; Gao, J.; Dolan, B. A persona-based neural conversation model. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, Berlin, Germany, 7–12 August 2016; Association for Computational Linguistics (ACL): Berlin, Germany, 2016; pp. 994–1003. [Google Scholar]
- Zhou, X.; Li, L.; Dong, D.; Liu, Y.; Chen, Y.; Zhao, W.X.; Yu, D.; Wu, H. Multi-turn response selection for chatbots with deep attention matching network. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, VIC, Australia, 15–20 July 2018; Association for Computational Linguistics (ACL): Melbourne, VIC, Australia, 2018; pp. 1118–1127. [Google Scholar]
- Ayana; Shen, S.-Q.; Lin, Y.-K.; Tu, C.-C.; Zhao, Y.; Liu, Z.-Y.; Sun, M.-S. Recent Advances on Neural Headline Generation. J. Comput. Sci. Technol. 2017, 32, 768–784. [Google Scholar] [CrossRef]
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. In Proceedings of the 28th Annual Conference on Neural Information Processing Systems 2014, NIPS 2014, Montreal, QC, Canada, 8–13 December 2014; Neural information processing systems foundation: Montreal, QC, Canada, 2014; pp. 3104–3112. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In Proceedings of the 31st Annual Conference on Neural Information Processing Systems, NIPS 2017, Long Beach, CA, USA, 4–9 December 2017; Neural Information Processing Systems Foundation: Long Beach, CA, USA, 2017; pp. 5999–6009. [Google Scholar]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2019, Minneapolis, MN, USA, 2–7 June 2019; Association for Computational Linguistics (ACL): Minneapolis, MN, USA, 2019; pp. 4171–4186. [Google Scholar]
- Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training. Available online: https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf (accessed on 26 January 2022).
- Song, K.; Tan, X.; Qin, T.; Lu, J.; Liu, T.-Y. MASS: Masked Sequence to Sequence Pre-Training for Language Generation. In Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach, CA, USA, 9–15 June 2019; International Machine Learning Society (IMLS): Long Beach, CA, USA, 2019; pp. 10384–10394. [Google Scholar]
- Wang, X.; Li, C.; Zhao, J.; Yu, D. Naturalconv: A chinese dialogue dataset towards multi-turn topic-driven conversation. arXiv 2021, arXiv:02548. [Google Scholar]
- Weizenbaum, J. ELIZA—A computer program for the study of natural language communication between man and machine. Commun. ACM 1966, 9, 36–45. [Google Scholar] [CrossRef]
- Colby, K.M.; Weber, S.; Hilf, F.D. Artificial paranoia. Artif. Intell. 1971, 2, 1–25. [Google Scholar] [CrossRef]
- Lowe, R.; Pow, N.; Serban, I.; Pineau, J. The ubuntu dialogue corpus: A large dataset for research in unstructured multi-turn dialogue systems. arXiv 2015, arXiv:08909. [Google Scholar]
- Yang, Z.; Choi, J.D. FriendsQA: Open-Domain Question Answering on TV Show Transcripts. In Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue, Stockholm, Sweden, 11–13 September 2019; pp. 188–197. [Google Scholar]
- Sun, K.; Yu, D.; Chen, J.; Yu, D.; Choi, Y.; Cardie, C. Dream: A challenge data set and models for dialogue-based reading comprehension. Trans. Assoc. Comput. Linguist. 2019, 7, 217–231. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Niu, Z.-Y.; Wu, H.; Che, W.; Liu, T. Towards conversational recommendation over multi-type dialogs. arXiv 2020, arXiv:03954. [Google Scholar]
- Xu, J.; Wang, H.; Niu, Z.; Wu, H.; Che, W. Knowledge Graph Grounded Goal Planning for Open-Domain Conversation Generation. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 9338–9345. [Google Scholar]
- Ma, Z.; Du, B.; Shen, J.; Yang, R.; Wan, J. An encoding mechanism for seq2seq based multi-turn sentimental dialogue generation model. Procedia Comput. Sci. 2020, 174, 412–418. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, Z. Multi-turn Dialogue System Based on Improved Seq2Seq Model. In Proceedings of the 2020 International Conference on Communications, Information System and Computer Engineering (CISCE), Kuala Lumpur, Malaysia, 3–5 July 2020; IEEE: New York, NY, USA, 2020; pp. 245–249. [Google Scholar]
- Wu, T.-W.; Su, R.; Juang, B.-H. A Context-Aware Hierarchical BERT Fusion Network for Multi-turn Dialog Act Detection. arXiv 2021, arXiv:01267. [Google Scholar]
- Vinyals, O.; Le, Q. A neural conversational model. arXiv 2015, arXiv:05869. [Google Scholar]
- Shang, L.; Lu, Z.; Li, H. Neural responding machine for short-text conversation. arXiv 2015, arXiv:02364. [Google Scholar]
- Serban, I.; Sordoni, A.; Bengio, Y.; Courville, A.; Pineau, J. Building End-to-End Dialogue Systems Using Generative Hierarchical Neural Network Models. In Proceedings of the AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016. [Google Scholar]
- Serban, I.V.; Sordoni, A.; Lowe, R.; Charlin, L.; Pineau, J.; Courville, A.; Bengio, Y. A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, AAAI 2017, San Francisco, CA, USA, 4–10 February 2017; AAAI Press: San Francisco, CA, USA, 2017; pp. 3295–3301. [Google Scholar]
- Sordoni, A.; Galley, M.; Auli, M.; Brockett, C.; Ji, Y.; Mitchell, M.; Nie, J.-Y.; Gao, J.; Dolan, B. A Neural Network Approach to Context-Sensitive Generation of Conversational Responses. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2015, Denver, CO, USA, 31 May–5 June 2015; Association for Computational Linguistics (ACL): Denver, CO, USA, 2015; pp. 196–205. [Google Scholar]
- Li, J.; Galley, M.; Brockett, C.; Gao, J.; Dolan, B. A Diversity-Promoting Objective Function for Neural Conversation Models. In Proceedings of the 15th Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2016, San Diego, CA, USA, 12–17 June 2016; Association for Computational Linguistics (ACL): San Diego, CA, USA, 2016; pp. 110–119. [Google Scholar]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. In Proceedings of the 1st International Conference on Learning Representations, ICLR 2013, Scottsdale, AZ, USA, 2–4 May 2013; International Conference on Learning Representations, ICLR: Scottsdale, AZ, USA, 2013. [Google Scholar]
- Pennington, J.; Socher, R.; Manning, C.D. GloVe: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, Doha, Qatar, 25–29 October 2014; Association for Computational Linguistics (ACL): Doha, Qatar, 2014; pp. 1532–1543. [Google Scholar]
- Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep Contextualized Word Representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2018, New Orleans, LA, USA, 1–6 June 2018; Association for Computational Linguistics (ACL): New Orleans, LA, USA, 2018; pp. 2227–2237. [Google Scholar]
- Cho, K.; Van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, Doha, Qatar, 25–29 October 2014; Association for Computational Linguistics (ACL): Doha, Qatar, 2014; pp. 1724–1734. [Google Scholar]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W.-C. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. In Proceedings of the 29th Annual Conference on Neural Information Processing Systems, NIPS 2015, Montreal, QC, Canada, 7–12 December 2015; Neural Information Processing Systems Foundation: Montreal, QC, Canada, 2015; pp. 802–810. [Google Scholar]
- Grosz, B.J.; Sidner, C.L. Attention, intentions, and the structure of discourse. Comput. Linguist. 1986, 12, 175–204. [Google Scholar]
- Roulet, E. A modular approach to discourse structures. Pragmatics 1997, 7, 125–146. [Google Scholar] [CrossRef]
- Wang, Y.; Ke, P.; Zheng, Y.; Huang, K.; Jiang, Y.; Zhu, X.; Huang, M. A Large-Scale Chinese Short-Text Conversation Dataset. In Proceedings of the CCF International Conference on Natural Language Processing and Chinese Computing, Zhengzhou, China, 14–18 October 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 91–103. [Google Scholar]
- Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.-J. Bleu: A Method for Automatic Evaluation of Machine Translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 7–12 July 2002; pp. 311–318. [Google Scholar]
Turns | Dialogue Text |
---|---|
Turn-1 | hi~你好啊 (Hello) |
Turn-2 | 嗯,你好,有什么事吗? (Hello, do you have any questions?) |
Turn-3 | 看你一个人也挺无聊的,来聊会天吧。(You look bored, let us have a chat.) |
Turn-4 | 好啊,聊点什么呢?(OK, what shall we talk about?) |
Turn-5 | 你看网球吗,我可是很喜欢网球的。(Do you like tennis? I like it very much.) |
Turn-6 | 网球啊,一般吧,我就知道个李娜。(Tennis is OK. I only know Li Na.) |
Data Sources | Turns | Data Quantity |
---|---|---|
Naturalconv [10] | 2; 3; 4; 5; 6 | 50,000; 50,000; 50,000; 50,000; 50,000 |
LCCC-large [26] | 2; 3; 4; 5; 6 | 120,000; 120,000; 120,000; 120,000; 120,000 |
Ours | 2; 3; 4; 5; 6 | 170,000; 170,000; 170,000; 170,000; 170,000 |
Topics | Turn | Data Quantity |
---|---|---|
Sport | 2; 3; 4; 5; 6 | 10,000; 10,000; 10,000; 10,000; 10,000 |
Health | 2; 3; 4; 5; 6 | 10,000; 10,000; 10,000; 10,000; 10,000 |
Tech | 2; 3; 4; 5; 6 | 10,000; 10,000; 10,000; 10,000; 10,000 |
Verification | random | 2000 |
Model | BLEU-2 | BLEU-3 | BLEU-4 | Average BLEU |
---|---|---|---|---|
Seq2Seq | 39.2 | 29.1 | 17.3 | 28.5 |
Transformer | 40.3 | 31.4 | 19.5 | 30.4 |
3EAG(Our) | 40.7 | 31.6 | 20.2 | 30.8 |
PBTG(Our) | 41.3 | 32.7 | 21.5 | 31.8 |
PBTG (Verification) | 40.9 | 32.1 | 20.7 | 31.2 |
#Layers | BLEU-2 | BLEU-3 | BLEU-4 | Average BLEU |
---|---|---|---|---|
8 | 40.2 | 29.4 | 19.1 | 29.5 |
9 | 40.7 | 30.8 | 20.2 | 30.5 |
10 | 40.5 | 31.2 | 19.3 | 30.3 |
11 | 41.3 | 30.4 | 20.6 | 30.7 |
12 | 41.3 | 32.7 | 21.5 | 31.8 |
Model | BLEU-2 | BLEU-3 | BLEU-4 | Average BLEU |
---|---|---|---|---|
Seq2Seq | 40.4 | 29.5 | 18.2 | 29.3 |
Transformer | 41.2 | 31.7 | 19.3 | 30.7 |
PBTG(Our) | 41.4 | 31.9 | 20.3 | 31.2 |
3EAG(Our) | 42.6 | 33.2 | 21.6 | 32.4 |
3EAG (Verification) | 42.1 | 32.5 | 21.0 | 31.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, X.; Hu, P.; Yang, C.; Zhang, R. Human–Machine Multi-Turn Language Dialogue Interaction Based on Deep Learning. Micromachines 2022, 13, 355. https://doi.org/10.3390/mi13030355
Ke X, Hu P, Yang C, Zhang R. Human–Machine Multi-Turn Language Dialogue Interaction Based on Deep Learning. Micromachines. 2022; 13(3):355. https://doi.org/10.3390/mi13030355
Chicago/Turabian StyleKe, Xianxin, Ping Hu, Chenghao Yang, and Renbao Zhang. 2022. "Human–Machine Multi-Turn Language Dialogue Interaction Based on Deep Learning" Micromachines 13, no. 3: 355. https://doi.org/10.3390/mi13030355
APA StyleKe, X., Hu, P., Yang, C., & Zhang, R. (2022). Human–Machine Multi-Turn Language Dialogue Interaction Based on Deep Learning. Micromachines, 13(3), 355. https://doi.org/10.3390/mi13030355