All-Electrical Control of Compact SOT-MRAM: Toward Highly Efficient and Reliable Non-Volatile In-Memory Computing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Proposed Device Structure and Parameters Optimization
2.2. 3T2M Cell Structure
2.3. Read and Write Circuits with Elaborated Performance
2.4. Non-Volatile In-Memory Computing
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cao, Y.; Xing, G.; Lin, H.; Zhang, N.; Zheng, H.; Wang, K. Prospect of Spin-Orbitronic Devices and Their Applications. iScience 2020, 23, 101614. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Lee, H.; Myung, S.; Kim, H.; Yoon, S.K.; Kwon, S.W.; Ju, Y.; Kim, M.; Yi, W.; Han, S.; et al. A crossbar array of magnetoresistive memory devices for in-memory computing. Nature 2022, 601, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Bak, J.H.; Kim, Y.J.; Kim, C.K.; Antonyan, A.; Chang, D.H.; Hwang, S.H.; Lee, G.W.; Ji, N.Y.; Kim, W.J.; et al. 1Gbit High Density Embedded STT-MRAM in 28nm FDSOI Technology. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2.2.1–2.2.4. [Google Scholar]
- Borders, W.A.; Pervaiz, A.Z.; Fukami, S.; Camsari, K.Y.; Ohno, H.; Datta, S. Integer factorization using stochastic magnetic tunnel junctions. Nature 2019, 573, 390–393. [Google Scholar] [CrossRef]
- Grollier, J.; Querlioz, D.; Camsari, K.Y.; Everschor-Sitte, K.; Fukami, S.; Stiles, M.D. Neuromorphic spintronics. Nat. Electron. 2020, 3, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Lee, O.J.; Gudmundsen, T.J.; Ralph, D.C.; Buhrman, R.A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 2012, 109, 096602. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Hrabec, A.; Dao, T.P.; Sala, G.; Finizio, S.; Feng, J.; Mayr, S.; Raabe, J.; Gambardella, P.; Heyderman, L.J. Current-driven magnetic domain-wall logic. Nature 2020, 579, 214–218. [Google Scholar] [CrossRef]
- Alamdar, M.; Leonard, T.; Cui, C.; Rimal, B.P.; Xue, L.; Akinola, O.G.; Patrick Xiao, T.; Friedman, J.S.; Bennett, C.H.; Marinella, M.J.; et al. Domain wall-magnetic tunnel junction spin–orbit torque devices and circuits for in-memory computing. Appl. Phys. Lett. 2021, 118, 112401. [Google Scholar] [CrossRef]
- Chen, R.; Cui, Q.; Liao, L.; Zhu, Y.; Zhang, R.; Bai, H.; Zhou, Y.; Xing, G.; Pan, F.; Yang, H.; et al. Reducing Dzyaloshinskii-Moriya interaction and field-free spin-orbit torque switching in synthetic antiferromagnets. Nat. Commun. 2021, 12, 3113. [Google Scholar] [CrossRef]
- Wang, M.; Cai, W.; Zhu, D.; Wang, Z.; Kan, J.; Zhao, Z.; Cao, K.; Wang, Z.; Zhang, Y.; Zhang, T. Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin–orbit and spin-transfer torques. Nat. Electron. 2018, 1, 582–588. [Google Scholar] [CrossRef]
- Kim, G.-H.; Bae, H.; Hur, J.; Kim, C.-K.; Lee, G.-B.; Bang, T.; Son, Y.-I.; Ryu, S.-W.; Choi, Y.-K. Highly Biased Linear Condition Method for Separately Extracting Source and Drain Resistance in MOSFETs. IEEE Trans. Electron Devices 2018, 65, 419–423. [Google Scholar] [CrossRef]
- Wu, B.; Wang, C.; Wang, Z.; Wang, Y.; Zhang, D.; Liu, D.; Zhang, Y.; Hu, X.S. Field-Free 3T2SOT MRAM for Non-Volatile Cache Memories. IEEE Trans. Circuits Syst. I Regular Papers 2020, 67, 4660–4669. [Google Scholar] [CrossRef]
- Ikeda, S.; Miura, K.; Yamamoto, H.; Mizunuma, K.; Gan, H.D.; Endo, M.; Kanai, S.; Hayakawa, J.; Matsukura, F.; Ohno, H. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater 2010, 9, 721–724. [Google Scholar] [CrossRef]
- Wang, J.; Lian, C.; Bai, Y.; Wang, G.; Zhang, Z.; Zheng, Z.; Chen, L.; Lin, K.; Zhang, K.; Zhang, Y.; et al. A Self-Matching Complementary-Reference Sensing Scheme for High-Speed and Reliable Toggle Spin Torque MRAM. IEEE Trans. Circuits Syst. I Regular Papers 2020, 67, 4247–4258. [Google Scholar] [CrossRef]
- Kim, T.H.; Han, S.H.; Cho, B.K. Chiral-induced switching of antiferromagnet spins in a confined nanowire. Commun. Phys. 2019, 2, 41. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Zhao, Y.; Xi, Y.; Xu, H.; Feng, H.; Xu, X.; Hao, W.; Zhou, S.; Zhao, J.; Dou, S.X.; et al. Electric-Field-Driven Negative Differential Conductance in 2D van der Waals Ferromagnet Fe3GeTe2. Nano Lett. 2021, 21, 9233–9239. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Wu, P.; Hou, W.; Jiang, Y.; Li, X.; Pandey, C.; Chen, D.; Yang, Q.; Wang, H.; et al. Above Room-Temperature Ferromagnetism in Wafer-Scale Two-Dimensional van der Waals Fe3GeTe2 Tailored by a Topological Insulator. ACS Nano 2020, 14, 10045–10053. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Liu, H.; Wang, C.; Wei, G.; Fang, C.; Wang, H.; Geng, C.; Liu, S.; Li, P.; et al. Generation and Control of Terahertz Spin Currents in Topology-Induced 2D Ferromagnetic Fe3GeTe2|Bi2Te3 Heterostructures. Adv. Mater. 2022, 2106172. [Google Scholar] [CrossRef]
- Xu, C.; Li, X.; Chen, P.; Zhang, Y.; Xiang, H.; Bellaiche, L. Assembling Diverse Skyrmionic Phases in Fe3GeTe2 Monolayer. Adv. Mater. 2022, 2107779. [Google Scholar] [CrossRef]
- Lin, H.; Yan, F.; Hu, C.; Lv, Q.; Zhu, W.; Wang, Z.; Wei, Z.; Chang, K.; Wang, K. Spin-Valve Effect in Fe3GeTe2/MoS2/Fe3GeTe2 van der Waals Heterostructures. ACS Appl. Mater Interfaces 2020, 12, 43921–43926. [Google Scholar] [CrossRef]
- Huang, X.; Xu, J.; Zeng, R.; Jiang, Q.; Nie, X.; Chen, C.; Jiang, X.; Liu, J.-M. Li-ion intercalation enhanced ferromagnetism in van der Waals Fe3GeTe2 bilayer. Appl. Phys. Lett. 2021, 119, 012405. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, H.; Yi, C.; Wang, X.; Huang, Y.; Tang, J.; Jiang, J.; He, C.; Zhao, M.; Ma, T.; et al. Exchange bias and spin–orbit torque in the Fe3GeTe2-based heterostructures prepared by vacuum exfoliation approach. Appl. Phys. Lett. 2021, 118, 262406. [Google Scholar] [CrossRef]
- Li, W.; Zeng, Y.; Zhao, Z.; Zhang, B.; Xu, J.; Huang, X.; Hou, Y. 2D Magnetic Heterostructures and Their Interface Modulated Magnetism. ACS Appl. Mater Interfaces 2021, 13, 50591–50601. [Google Scholar] [CrossRef]
- Kim, D.; Lee, C.; Jang, B.G.; Kim, K.; Shim, J.H. Drastic change of magnetic anisotropy in Fe3GeTe2 and Fe4GeTe2 monolayers under electric field studied by density functional theory. Sci. Rep. 2021, 11, 17567. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Berlijn, T.; Liang, L. Thickness and Spin Dependence of Raman Modes in Magnetic Layered Fe3GeTe2. Adv. Electron. Mater. 2021, 7, 2001159. [Google Scholar] [CrossRef]
- Yin, S.; Zhao, L.; Song, C.; Huang, Y.; Gu, Y.; Chen, R.; Zhu, W.; Sun, Y.; Jiang, W.; Zhang, X.; et al. Evolution of domain structure in Fe3GeTe2. Chin. Phys. B 2021, 30, 027505. [Google Scholar] [CrossRef]
- Zhang, W.; Wong, P.K.J.; Zhu, R.; Wee, A.T.S. Van der Waals magnets: Wonder building blocks for two-dimensional spintronics? InfoMat 2019, 1, 479–495. [Google Scholar] [CrossRef] [Green Version]
- Joe, M.; Srivastava, P.; Singh, B.; Ahn, H.; Lee, C. Iron-based ferromagnetic van der Waals materials. J. Phys. D Appl. Phys. 2021, 54, 473002. [Google Scholar] [CrossRef]
- May, A.F.; Ovchinnikov, D.; Zheng, Q.; Hermann, R.; Calder, S.; Huang, B.; Fei, Z.; Liu, Y.; Xu, X.; McGuire, M.A. Ferromagnetism Near Room Temperature in the Cleavable van der Waals Crystal Fe5GeTe2. ACS Nano 2019, 13, 4436–4442. [Google Scholar] [CrossRef]
- Nair, G.K.R.; Zhang, Z.; Hou, F.; Abdelaziem, A.; Xu, X.; Yang, S.W.Q.; Zhang, N.; Li, W.; Zhu, C.; Wu, Y.; et al. Phase-pure two-dimensional FexGeTe2 magnets with near-room-temperature TC. Nano Res. 2022, 15, 457–464. [Google Scholar] [CrossRef]
- Zhang, L.; Song, L.; Dai, H.; Yuan, J.-H.; Wang, M.; Huang, X.; Qiao, L.; Cheng, H.; Wang, X.; Ren, W.; et al. Substrate-modulated ferromagnetism of two-dimensional Fe3GeTe2. Appl. Phys. Lett. 2020, 116, 042402. [Google Scholar] [CrossRef]
- Deng, Y.; Yu, Y.; Song, Y.; Zhang, J.; Wang, N.Z.; Sun, Z.; Yi, Y.; Wu, Y.Z.; Wu, S.; Zhu, J.; et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99. [Google Scholar] [CrossRef]
- Yang, M.; Li, Q.; Chopdekar, R.V.; Stan, C.; Cabrini, S.; Choi, J.W.; Wang, S.; Wang, T.; Gao, N.; Scholl, A.; et al. Highly Enhanced Curie Temperature in Ga-Implanted Fe3GeTe2 van der Waals Material. Adv. Quantum Technol. 2020, 3, 2000017. [Google Scholar] [CrossRef]
- Shen, Z.-X.; Bo, X.; Cao, K.; Wan, X.; He, L. Magnetic ground state and electron-doping tuning of Curie temperature in Fe3GeTe2: First-principles studies. Phys. Rev. B 2021, 103, 085102. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, X.; Dai, H.; Wang, M.; Cheng, H.; Tong, L.; Li, Z.; Han, X.; Wang, X.; Ye, L.; et al. Proximity-Coupling-Induced Significant Enhancement of Coercive Field and Curie Temperature in 2D van der Waals Heterostructures. Adv. Mater. 2020, 32, e2002032. [Google Scholar] [CrossRef]
- Liu, S.; Yuan, X.; Zou, Y.; Sheng, Y.; Huang, C.; Zhang, E.; Ling, J.; Liu, Y.; Wang, W.; Zhang, C.; et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy. npj 2D Mater. Appl. 2017, 1, 30. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Lü, J.-T.; Zhang, J.; You, L.; Su, Y.; Tsymbal, E.Y. Spin-Dependent Transport in van der Waals Magnetic Tunnel Junctions with Fe3GeTe2 Electrodes. Nano Lett. 2019, 19, 5133–5139. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.J.; Cheng, B.; Cui, X.; Miao, F. Van der Waals Heterostructures for High-Performance Device Applications: Challenges and Opportunities. Adv. Mater. 2020, 32, e1903800. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Sapkota, D.; Taniguchi, T.; Watanabe, K.; Mandrus, D.; Morpurgo, A.F. Tunneling Spin Valves Based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals Heterostructures. Nano Lett. 2018, 18, 4303–4308. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.L.; Zhang, J.Y.; Feng, G.N.; Xu, X.L.; Yang, C.; Jia, Y.L.; Yu, G.H. Tunable damping-like and field-like spin-orbit-torque in Pt/Co/HfO2 films via interfacial charge transfer. Appl. Phys. Lett. 2019, 115, 172403. [Google Scholar] [CrossRef]
- Jiang, M.; Asahara, H.; Sato, S.; Ohya, S.; Tanaka, M. Suppression of the field-like torque for efficient magnetization switching in a spin–orbit ferromagnet. Nat. Electron. 2020, 3, 751–756. [Google Scholar] [CrossRef]
- Wu, K.; Su, D.; Saha, R.; Wang, J.-P. Deterministic field-free switching of a perpendicularly magnetized ferromagnetic layer via the joint effects of the Dzyaloshinskii-Moriya interaction and damping- and field-like spin–orbit torques: An appraisal. J. Phys. D Appl. Phys. 2020, 53, 205002. [Google Scholar] [CrossRef]
- Lin, Z.Z.; Chen, X. Ultrathin Scattering Spin Filter and Magnetic Tunnel Junction Implemented by Ferromagnetic 2D van der Waals Material. Adv. Electron. Mater. 2020, 6, 1900968. [Google Scholar] [CrossRef]
- Garzón, E.; De Rose, R.; Crupi, F.; Trojman, L.; Lanuzza, M. Assessment of STT-MRAM performance at nanoscaled technology nodes using a device-to-memory simulation framework. Microelectron. Eng. 2019, 215, 111009. [Google Scholar] [CrossRef]
- Deiseroth, H.-J.; Aleksandrov, K.; Reiner, C.; Kienle, L.; Kremer, R.K. Fe3GeTe2 and Ni3GeTe2—Two New Layered Transition-Metal Compounds: Crystal Structures, HRTEM Investigations, and Magnetic and Electrical Properties. Eur. J. Inorg. Chem. 2006, 2006, 1561–1567. [Google Scholar] [CrossRef]
- Wang, X.; Tang, J.; Xia, X.; He, C.; Zhang, J.; Liu, Y.; Wan, C.; Fang, C.; Guo, C.; Yang, W. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci. Adv. 2019, 5, eaaw8904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.; Yan, F.; Hu, C.; Zheng, Y.; Sheng, Y.; Zhu, W.; Wang, Z.; Zheng, H.; Wang, K. Current-assisted magnetization reversal in Fe3GeTe2 van der Waals homojunctions. Nanoscale 2022, 14, 2352–2358. [Google Scholar] [CrossRef]
- Alghamdi, M.; Lohmann, M.; Li, J.; Jothi, P.R.; Shao, Q.; Aldosary, M.; Su, T.; Fokwa, B.P.T.; Shi, J. Highly Efficient Spin-Orbit Torque and Switching of Layered Ferromagnet Fe3GeTe2. Nano Lett. 2019, 19, 4400–4405. [Google Scholar] [CrossRef] [Green Version]
- Alahmed, L.; Nepal, B.; Macy, J.; Zheng, W.; Casas, B.; Sapkota, A.; Jones, N.; Mazza, A.R.; Brahlek, M.; Jin, W.; et al. Magnetism and spin dynamics in room-temperature van der Waals magnet Fe5GeTe2. 2D Mater. 2021, 8, 045030. [Google Scholar] [CrossRef]
- Tang, W.; Liu, H.; Li, Z.; Pan, A.; Zeng, Y.J. Spin-Orbit Torque in Van der Waals-Layered Materials and Heterostructures. Adv. Sci. 2021, 8, e2100847. [Google Scholar] [CrossRef]
- Lee, K.-S.; Lee, S.-W.; Min, B.-C.; Lee, K.-J. Threshold current for switching of a perpendicular magnetic layer induced by spin Hall effect. Appl. Phys. Lett. 2013, 102, 112410. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Rowlands, G.E.; Lee, O.J.; Ralph, D.C.; Buhrman, R.A. Macrospin modeling of sub-ns pulse switching of perpendicularly magnetized free layer via spin-orbit torques for cryogenic memory applications. Appl. Phys. Lett. 2014, 105, 102404. [Google Scholar] [CrossRef]
- Legrand, W.; Ramaswamy, R.; Mishra, R.; Yang, H. Coherent Subnanosecond Switching of Perpendicular Magnetization by the Fieldlike Spin-Orbit Torque without an External Magnetic Field. Phys. Rev. Appl. 2015, 3, 064012. [Google Scholar] [CrossRef]
- Jeon, J.; Cho, S.W.; Lee, O.; Hong, J.; Kwak, J.Y.; Han, S.; Jung, S.; Kim, Y.; Ko, H.-W.; Lee, S.; et al. Field-like spin–orbit torque induced by bulk Rashba channels in GeTe/NiFe bilayers. NPG Asia Mater. 2021, 13, 76. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, H.; Shi, K.; Liu, Y.; Qiao, J.; Zhu, D.; Cai, W.; Zhang, X.; Eimer, S.; Zhu, D.; et al. Modulation of field-like spin orbit torque in heavy metal/ferromagnet heterostructures. Nanoscale 2020, 12, 15246–15251. [Google Scholar] [CrossRef]
- Peng, W.L.; Zhang, J.Y.; Feng, G.N.; Xu, X.L.; Yang, C.; Jia, Y.L.; Yu, G.H. Enhancement of spin–orbit torque via interfacial hydrogen and oxygen ion manipulation. Appl. Phys. Lett. 2019, 115, 092402. [Google Scholar] [CrossRef]
- Hasegawa, K.; Hibino, Y.; Suzuki, M.; Koyama, T.; Chiba, D. Enhancement of spin-orbit torque by inserting CoOx layer into Co/Pt interface. Phys. Rev. B 2018, 98, 020405. [Google Scholar] [CrossRef]
- Zhu, D.; Zhao, W. Threshold Current Density for Perpendicular Magnetization Switching Through Spin-Orbit Torque. Phys. Rev. Appl. 2020, 13, 044078. [Google Scholar] [CrossRef]
- Li, D.; Chen, S.; Zuo, Y.; Yun, J.; Cui, B.; Wu, K.; Guo, X.; Yang, D.; Wang, J.; Xi, L. Roles of Joule heating and spin-orbit torques in the direct current induced magnetization reversal. Sci. Rep. 2018, 8, 12959. [Google Scholar] [CrossRef]
- Tan, C.; Lee, J.; Jung, S.G.; Park, T.; Albarakati, S.; Partridge, J.; Field, M.R.; McCulloch, D.G.; Wang, L.; Lee, C. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 2018, 9, 1554. [Google Scholar] [CrossRef] [Green Version]
- Park, S.Y.; Kim, D.S.; Liu, Y.; Hwang, J.; Kim, Y.; Kim, W.; Kim, J.-Y.; Petrovic, C.; Hwang, C.; Mo, S.-K.; et al. Controlling the Magnetic Anisotropy of the van der Waals Ferromagnet Fe3GeTe2 through Hole Doping. Nano Lett. 2019, 20, 95–100. [Google Scholar] [CrossRef]
- Gilmore, K.; Idzerda, Y.U.; Stiles, M.D. Identification of the dominant precession-damping mechanism in Fe, Co, and Ni by first-principles calculations. Phys. Rev. Lett. 2007, 99, 027204. [Google Scholar] [CrossRef] [Green Version]
- Tserkovnyak, Y.; Brataas, A.; Bauer, G.E. Enhanced gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 2002, 88, 117601. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-H.; Kim, H.-H.; You, C.-Y. Suppression of the spin pumping in Pd/Ni81Fe19 bilayers with nano-oxide layer. Appl. Phys. Lett. 2011, 99, 072502. [Google Scholar] [CrossRef]
- Luo, Z.; Lu, Z.; Xiong, C.; Zhu, T.; Wu, W.; Zhang, Q.; Wu, H.; Zhang, X.; Zhang, X. Reconfigurable Magnetic Logic Combined with Nonvolatile Memory Writing. Adv. Mater. 2017, 29, 1605027. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, B.; Wang, Z.; Wang, Y.; Zhang, Y.; Zhao, W. Write-Efficient STT/SOT Hybrid Triple-Level Cell for High-Density MRAM. IEEE Trans. Electron Devices 2020, 67, 1460–1465. [Google Scholar] [CrossRef]
- He, Z.; Angizi, S.; Fan, D. Accelerating Low Bit-Width Deep Convolution Neural Network in MRAM. In Proceedings of the 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Hong Kong, China, 8–11 July 2018; pp. 533–538. [Google Scholar]
- Angizi, S.; He, Z.; Parveen, F.; Fan, D. IMCE: Energy-Efficient Bit-Wise in-Memory Convolution Engine for Deep Neural Network. In Proceedings of the 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC), Jeju, Korea, 22–25 January 2018; pp. 111–116. [Google Scholar]
- Zidan, M.A.; Strachan, J.P.; Lu, W.D. The future of electronics based on memristive systems. Nat. Electron. 2018, 1, 22–29. [Google Scholar] [CrossRef]
- Yao, P.; Wu, H.; Gao, B.; Tang, J.; Zhang, Q.; Zhang, W.; Yang, J.J.; Qian, H. Fully hardware-implemented memristor convolutional neural network. Nature 2020, 577, 641–646. [Google Scholar] [CrossRef]
- Lin, H.; Wu, Z.; Liu, L.; Wang, D.; Zhao, X.; Cheng, L.; Lin, Y.; Wang, Z.; Xu, X.; Xu, H.; et al. Implementation of Highly Reliable and Energy Efficient in-Memory Hamming Distance Computations in 1 Kb 1-Transistor-1-Memristor Arrays. Adv. Mater. Technol. 2021, 6, 2100745. [Google Scholar] [CrossRef]
- Liu, S.; Li, Z.; Yang, K.; Zhang, E.; Narayan, A.; Zhang, X.; Zhu, J.; Liu, W.; Liao, Z.; Kudo, M.; et al. Tuning 2D magnetism in Fe3+XGeTe2 films by element doping. Natl. Sci. Rev. 2021, nwab117. [Google Scholar] [CrossRef]
- Rahman, S.; Torres, J.F.; Khan, A.R.; Lu, Y. Recent Developments in van der Waals Antiferromagnetic 2D Materials: Synthesis, Characterization, and Device Implementation. ACS Nano 2021, 15, 17175–17213. [Google Scholar] [CrossRef]
Parameter | Description | Value |
---|---|---|
Ms | Saturation magnetization | 1.7 × 105 A/m |
HK | Effective anisotropy | 2.0 × 106 A/m |
α | Gilbert damping constant | 0.02 |
λFL/λDL | Ratio of FL torque to DL torque | 4 |
θSH | Spin Hall angle of heavy metal | −0.3 |
ρHM | Resistivity of heavy metal | 200 μΩ·cm |
tBL | Thickness of barrier layer | 0.85 nm |
PhiBas | Barrier potential height | 0.4 eV |
RA | Resistance–area product | 10 μΩ·cm2 |
AMTJ | MTJ area | 60 nm × 60 nm |
TMR0 | TMR ratio at zero bias | 250 |
W × L × tHM | Heavy metal dimension | 120 nm × 60 nm × 2 nm |
HK (A/m) | Ic (μA) | Latency (ps) | Power (fJ/bit) |
---|---|---|---|
1.6 × 106 | 59.4 | 75 | 4.47 |
2.0 × 106 | 75.6 | 61 | 4.51 |
2.4 × 106 | 92.7 | 54 | 4.80 |
2.8 × 106 | 113.6 | 53 | 5.65 |
3.2 × 106 | 141.5 | 72 | 9.28 |
3.6 × 106 | No switching |
Device | Operation | Cell Area | Avg. Latency (ps) | Avg. Power Consumption (fJ/bit) |
---|---|---|---|---|
6T SRAM | Write | 140 F2 | 57 | 5.61 |
AND/NAND | 22 | 71.37 | ||
OR/NOR | 19.25 | 71.48 | ||
2T1M SOT-MRAM (CFB) | Write | 69 F2 | 218 | 56.62 |
AND/NAND | 50.75 | 118.19 | ||
OR/NOR | 43.5 | 117.68 | ||
3T2M SOT-MRAM (CFB) | Write | 82.5 F2 | 200 | 35.53 |
AND/NAND | 39.25 | 93.55 | ||
OR/NOR | 48.25 | 93.80 | ||
3T2M SOT-MRAM (FGT) | Write | 82.5 F2 | 24 | 2.47 |
AND/NAND | 35 | 57.53 | ||
OR/NOR | 45.25 | 57.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Luo, X.; Liu, L.; Wang, D.; Zhao, X.; Wang, Z.; Xue, X.; Zhang, F.; Xing, G. All-Electrical Control of Compact SOT-MRAM: Toward Highly Efficient and Reliable Non-Volatile In-Memory Computing. Micromachines 2022, 13, 319. https://doi.org/10.3390/mi13020319
Lin H, Luo X, Liu L, Wang D, Zhao X, Wang Z, Xue X, Zhang F, Xing G. All-Electrical Control of Compact SOT-MRAM: Toward Highly Efficient and Reliable Non-Volatile In-Memory Computing. Micromachines. 2022; 13(2):319. https://doi.org/10.3390/mi13020319
Chicago/Turabian StyleLin, Huai, Xi Luo, Long Liu, Di Wang, Xuefeng Zhao, Ziwei Wang, Xiaoyong Xue, Feng Zhang, and Guozhong Xing. 2022. "All-Electrical Control of Compact SOT-MRAM: Toward Highly Efficient and Reliable Non-Volatile In-Memory Computing" Micromachines 13, no. 2: 319. https://doi.org/10.3390/mi13020319
APA StyleLin, H., Luo, X., Liu, L., Wang, D., Zhao, X., Wang, Z., Xue, X., Zhang, F., & Xing, G. (2022). All-Electrical Control of Compact SOT-MRAM: Toward Highly Efficient and Reliable Non-Volatile In-Memory Computing. Micromachines, 13(2), 319. https://doi.org/10.3390/mi13020319