On-Chip Reconfigurable Focusing through Low-Loss Phase Change Materials Based Metasurfaces
Abstract
1. Introduction
2. Numerical Simulation Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arbabi, A.; Horie, Y.; Bagheri, M.; Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 2015, 10, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Gric, T. Spoof plasmons in corrugated transparent conducting oxides. J. ElEctromagnEtic WavEs Appl. 2016, 30, 721–727. [Google Scholar] [CrossRef]
- Feldmann, J.; Stegmaier, M.; Gruhler, N.; Rios, C.; Bhaskaran, H.; Wright, C.; Pernice, W. Calculating with light using a chip-scale all-optical abacus. Nat. Commun. 2017, 8, 1256. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Xiao, S.; Ye, D.; Huangfu, J.; Wang, Z.; Ran, L.; Zhou, L. Fractal plasmonic metamaterials for subwavelength imaging. Opt. Express 2010, 18, 10377–10387. [Google Scholar] [CrossRef] [PubMed]
- Sanphuang, V.; Yeo, W.G.; Volakis, J.L.; Nahar, N.K. THz transparent metamaterials for enhanced spectroscopic and imaging measurements. IEEE Trans. Terahertz Sci. Technol. 2014, 5, 117–123. [Google Scholar] [CrossRef]
- Wang, W.; Yadav, N.; Shen, Z.; Cao, Y.; Liu, J.; Liu, X. Two-stage magnifying hyperlens structure based on metamaterials for super-resolution imaging. Optik 2018, 174, 199–206. [Google Scholar] [CrossRef]
- LI, Y.; LIU, C.; ZHOU, J. Progress of metamaterial cloaking in multiple physical fields. Mater. China 2019, 38, 30–41. [Google Scholar]
- Zhang, F.; Li, C.; Fan, Y.; Yang, R.; Shen, N.H.; Fu, Q.; Zhang, W.; Zhao, Q.; Zhou, J.; Koschny, T. Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal-Dielectric Hybrid Metamaterials. Adv. Mater. 2019, 31, 1903206. [Google Scholar] [CrossRef]
- Beni, T.; Yamasaku, N.; Kurotsu, T.; To, N.; Okazaki, S.; Arakawa, T.; Balcytis, A.; Seniutinas, G.; Juodkazis, S.; Nishijima, Y. Metamaterial for hydrogen sensing. ACS Sensors 2019, 4, 2389–2394. [Google Scholar] [CrossRef]
- Drexler, C.; Shishkanova, T.V.; Lange, C.; Danilov, S.N.; Weiss, D.; Ganichev, S.D.; Mirsky, V.M. Terahertz split-ring metamaterials as transducers for chemical sensors based on conducting polymers: A feasibility study with sensing of acidic and basic gases using polyaniline chemosensitive layer. Microchim. Acta 2014, 181, 1857–1862. [Google Scholar] [CrossRef]
- Nisar, M.S.; Cui, Y.; Dang, K.; Jiang, L.; Zhao, X. Near-Field Spot for Localized Light-Excitation of a Single Fluorescent Molecule. Photonic Sens. 2020, 10, 364–374. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, X.; Kumar, S.; Singh, R.; Zhang, B.; Bai, C.; Pu, X. Development of glucose sensor using gold nanoparticles and glucose-oxidase functionalized tapered fiber structure. Plasmonics 2020, 15, 841–848. [Google Scholar] [CrossRef]
- El Eter, A.; Hameed, N.M.; Baida, F.I.; Salut, R.; Filiatre, C.; Nedeljkovic, D.; Atie, E.; Bole, S.; Grosjean, T. Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip. Opt. Express 2014, 22, 10072–10080. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Luo, J.; Ma, Q.; Rajabalipanah, H.; Nisar, M.S.; Zhang, L.; Abdolali, A.; Cui, T.J. Power modulation of vortex beams using phase/amplitude adjustable transmissive coding metasurfaces. J. Phys. D: Appl. Phys. 2020, 54, 035305. [Google Scholar] [CrossRef]
- Ma, Q.; Bai, G.D.; Jing, H.B.; Yang, C.; Li, L.; Cui, T.J. Smart metasurface with self-adaptively reprogrammable functions. Light. Sci. Appl. 2019, 8, 98. [Google Scholar] [CrossRef]
- Feldmann, J.; Youngblood, N.; Li, X.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H. Integrated 256 cell photonic phase-change memory with 512-bit capacity. IEEE J. Sel. Top. Quantum Electron. 2019, 26, 8301807. [Google Scholar] [CrossRef]
- Nisar, M.S.; Yang, X.; Lu, L.; Chen, J.; Zhou, L. On-chip integrated photonic devices based on phase change materials. Photonics 2021, 8, 205. [Google Scholar] [CrossRef]
- Chen, L.; Ma, Q.; Luo, S.S.; Ye, F.J.; Cui, H.Y.; Cui, T.J. Touch-Programmable Metasurface for Various Electromagnetic Manipulations and Encryptions. Small 2022, 18, 2203871. [Google Scholar] [CrossRef]
- Luo, X. Directly wireless communication of human minds via mind-controlled programming metasurface. Light. Sci. Appl. 2022, 11, 182. [Google Scholar] [CrossRef]
- Siegrist, T.; Merkelbach, P.; Wuttig, M. Phase change materials: Challenges on the path to a universal storage device. Annu. Rev. Condens. Matter Phys. 2012, 3, 215–237. [Google Scholar] [CrossRef]
- Lencer, D.; Salinga, M.; Grabowski, B.; Hickel, T.; Neugebauer, J.; Wuttig, M. A map for phase-change materials. Nat. Mater. 2008, 7, 972–977. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Ghosh, S.; Zhang, H.; Zhou, L.; Rahman, B. Design, optimization, and performance evaluation of GSST clad low-loss non-volatile switches. Appl. Opt. 2019, 58, 8687–8694. [Google Scholar] [CrossRef] [PubMed]
- Muramoto, K.; Takahashi, Y.; Terakado, N.; Yamazaki, Y.; Suzuki, S.; Fujiwara, T. VO2-dispersed glass: A new class of phase change material. Sci. Rep. 2018, 8, 2275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhou, L.; Xu, J.; Lu, L.; Chen, J.; Rahman, B. Silicon microring resonators tuned with GST phase change material. In Proceedings of the 2018 Asia Communications and Photonics Conference (ACP), Hangzhou, China, 26–29 October 2018; pp. 1–3. [Google Scholar]
- Wu, C.; Yu, H.; Li, H.; Takeuchi, I.; Li, M. Programmable metasurface using phase change material for waveguide mode conversion. In Proceedings of the CLEO: Science and Innovations, Optical Society of America, Washington, DC, USA, 10–15 May 2020. [Google Scholar]
- Shen, B.; Wang, P.; Polson, R.; Menon, R. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photonics 2015, 9, 378–382. [Google Scholar] [CrossRef]
- Le Gallo, M.; Sebastian, A. An overview of phase-change memory device physics. J. Phys. D Appl. Phys. 2020, 53, 213002. [Google Scholar] [CrossRef]
- Miscuglio, M.; Adam, G.C.; Kuzum, D.; Sorger, V.J. Roadmap on material-function mapping for photonic-electronic hybrid neural networks. APL Mater. 2019, 7, 100903. [Google Scholar] [CrossRef]
- Delaney, M.; Zeimpekis, I.; Lawson, D.; Hewak, D.W.; Muskens, O.L. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater. 2020, 30, 2002447. [Google Scholar] [CrossRef]
- Wang, Z.; Li, T.; Soman, A.; Mao, D.; Kananen, T.; Gu, T. On-chip wavefront shaping with dielectric metasurface. Nat. Commun. 2019, 10, 3547. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nisar, M.S.; Iqbal, S.; Zhou, L. On-Chip Reconfigurable Focusing through Low-Loss Phase Change Materials Based Metasurfaces. Micromachines 2022, 13, 2185. https://doi.org/10.3390/mi13122185
Nisar MS, Iqbal S, Zhou L. On-Chip Reconfigurable Focusing through Low-Loss Phase Change Materials Based Metasurfaces. Micromachines. 2022; 13(12):2185. https://doi.org/10.3390/mi13122185
Chicago/Turabian StyleNisar, Muhammad Shemyal, Shahid Iqbal, and Linjie Zhou. 2022. "On-Chip Reconfigurable Focusing through Low-Loss Phase Change Materials Based Metasurfaces" Micromachines 13, no. 12: 2185. https://doi.org/10.3390/mi13122185
APA StyleNisar, M. S., Iqbal, S., & Zhou, L. (2022). On-Chip Reconfigurable Focusing through Low-Loss Phase Change Materials Based Metasurfaces. Micromachines, 13(12), 2185. https://doi.org/10.3390/mi13122185