Surface Modification of Polymethylmethacrylate (PMMA) by Ultraviolet (UV) Irradiation and IPA Rinsing
Abstract
1. Introduction
2. Ultraviolet (UV) Surface Treatment
3. Experimental Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reeja-Jayan, B.; Kovacik, P.; Yang, R.; Sojoudi, H.; Ugur, A.; Kim, D.H.; Petruczok, C.D.; Wang, X.; Liu, A.; Gleason, K.K. A Route Towards Sustainability Through Engineered Polymeric Interfaces. Adv. Mater. Interfaces 2014, 1, 1400117. [Google Scholar] [CrossRef]
- Govindarajan, T.; Shandas, R. A Survey of Surface Modification Techniques for Next-Generation Shape Memory Polymer Stent Devices. Polymers 2014, 6, 2309–2331. [Google Scholar] [CrossRef]
- Ogonczyk, D.; Jankowski, P.; Garstecki, P. A Method for Simultaneous Polishing and Hydrophobization of Polycarbonate for Microfluidic Applications. Polymers 2020, 12, 2490. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, A.; Jarad, N.A.; Khan, S.; Didar, T.F. Bio-functionalization of microfluidic platforms made of thermoplastic materials: A review. Anal. Chim. Acta 2022, 1209, 339283. [Google Scholar] [CrossRef]
- Agha, A.; Waheed, W.; Alamoodi, N.; Mathew, B.; Alnaimat, F.; Abu-Nada, E.; Abderrahmane, A.; Alazzam, A. A Review of Cyclic Olefin Copolymer Applications in Microfluidics and Microdevices. Macromol. Mater. Eng. 2022, 307, 2200053. [Google Scholar] [CrossRef]
- Van Midwoud, P.M.; Janse, A.; Merema, M.T.; Groothuis, G.M.; Verpoorte, E. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal. Chem. 2012, 84, 3938–3944. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.B.; Hanson, R.L.; Almughamsi, H.M.; Pang, C.; Fish, T.R.; Woolley, A.T. Microfluidics: Innovations in Materials and Their Fabrication and Functionalization. Anal. Chem. 2020, 92, 150–168. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.J.; Geist, J.; Locascio, L.E.; Gaitan, M.; Rao, M.V.; Vreeland, W.N. Surface modification of poly(methyl methacrylate) for improved adsorption of wall coating polymers for microchip electrophoresis. Electrophoresis 2006, 27, 3788–3796. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Quijada, G.A.; Peytavi, R.; Nantel, A.; Roy, E.; Bergeron, M.G.; Dumoulin, M.M.; Veres, T. Surface modification of thermoplastics--towards the plastic biochip for high throughput screening devices. Lab Chip 2007, 7, 856–862. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Klapperich, C.M. Mechanical and chemical analysis of plasma and ultraviolet-ozone surface treatments for thermal bonding of polymeric microfluidic devices. Lab Chip 2007, 7, 876–882. [Google Scholar] [CrossRef]
- Schutte, J.; Freudigmann, C.; Benz, K.; Bottger, J.; Gebhardt, R.; Stelzle, M. A method for patterned in situ biofunctionalization in injection-molded microfluidic devices. Lab Chip 2010, 10, 2551–2558. [Google Scholar] [CrossRef] [PubMed]
- Saman, N.M.; Ahmad, M.H.; Buntat, Z. Application of Cold Plasma in Nanofillers Surface Modification for Enhancement of Insulation Characteristics of Polymer Nanocomposites: A Review. IEEE Access 2021, 9, 80906–80930. [Google Scholar] [CrossRef]
- Shuai, C.; Zan, J.; Yang, Y.; Peng, S.; Yang, W.; Qi, F.; Shen, L.; Tian, Z. Surface modification enhances interfacial bonding in PLLA/MgO bone scaffold. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 108, 110486. [Google Scholar] [CrossRef] [PubMed]
- Hoseinpour, V.; Noori, L.; Mahmoodpour, S.; Shariatinia, Z. A review on surface modification methods of poly(arylsulfone) membranes for biomedical applications. J. Biomater. Sci. Polym. Ed. 2021, 32, 906–965. [Google Scholar] [CrossRef] [PubMed]
- Trinh, K.T.L.; Thai, D.A.; Chae, W.R.; Lee, N.Y. Rapid Fabrication of Poly(methyl methacrylate) Devices for Lab-on-a-Chip Applications Using Acetic Acid and UV Treatment. ACS Omega 2020, 5, 17396–17404. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.-W.; Hromada, L.; Liu, J.; Kumar, P.; DeVoe, D.L. Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 2007, 7, 499–505. [Google Scholar] [CrossRef]
- Raffi, A.A.; Rahman, M.A.; Salim, M.A.M.; Ismail, N.J.; Othman, M.H.D.; Ismail, A.F.; Bakhtiar, H. Surface treatment on polymeric polymethyl methacrylate (PMMA) core via dip-coating photopolymerisation curing method. Opt. Fiber Technol. 2020, 57, 102215. [Google Scholar] [CrossRef]
- Scheicher, S.R.; Krammer, K.; Fian, A.; Kargl, R.; Ribitsch, V.; Köstler, S. Patterned Surface Activation of Cyclo-Olefin Polymers for Biochip Applications. Period. Polytech. Chem. Eng. 2014, 58, 61–67. [Google Scholar] [CrossRef]
- Piruska, A.; Nikcevic, I.; Lee, S.H.; Ahn, C.; Heineman, W.R.; Limbach, P.A.; Seliskar, C.J. The autofluorescence of plastic materials and chips measured under laser irradiation. Lab Chip 2005, 5, 1348–1354. [Google Scholar] [CrossRef]
- Ali, U.; Karim, K.J.B.A.; Buang, N.A. A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Polym. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Rajendran, S.; Sivakumar, M.; Subadevi, R. Effect of salt concentration in poly(vinyl alcohol)-based solid polymer electrolytes. J. Power Sources 2003, 124, 225–230. [Google Scholar] [CrossRef]
- Sun, W.; Liu, W.; Wu, Z.; Chen, H. Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromol. Rapid Commun. 2020, 41, e1900430. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Song, Z.; Li, J.; Peng, J.; Xu, X. Numerical Simulation of Transient Surface Charging of Polymer Surface under DC Corona Considering Plasma Chemistry. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 33–41. [Google Scholar] [CrossRef]
- Tomanik, M.; Kobielarz, M.; Filipiak, J.; Szymonowicz, M.; Rusak, A.; Mroczkowska, K.; Antonczak, A.; Pezowicz, C. Laser Texturing as a Way of Influencing the Micromechanical and Biological Properties of the Poly(L-Lactide) Surface. Materials 2020, 13, 3786. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Kim, H.T. Effects of laser annealing on polymer sheets using a laser-diode with a wavelength of 408 nm. Mol. Cryst. Liq. Cryst. 2021, 735, 9–15. [Google Scholar] [CrossRef]
- Nemani, S.K.; Annavarapu, R.K.; Mohammadian, B.; Raiyan, A.; Heil, J.; Haque, M.A.; Abdelaal, A.; Sojoudi, H. Surface Modification of Polymers: Methods and Applications. Adv. Mater. Interfaces 2018, 5, 1801247. [Google Scholar] [CrossRef]
- Giri, K.; Tsao, C.W. Recent Advances in Thermoplastic Microfluidic Bonding. Micromachines 2022, 13, 486. [Google Scholar] [CrossRef]
- Murakami, T.N.; Fukushima, Y.; Hirano, Y.; Tokuoka, Y.; Takahashi, M.; Kawashima, N. Surface modification of polystyrene and poly(methyl methacrylate) by active oxygen treatment. Colloids Surf. B Biointerfaces 2003, 29, 171–179. [Google Scholar] [CrossRef]
- Henry, A.C.; Tutt, T.J.; Galloway, M.; Davidson, Y.Y.; McWhorter, C.S.; Soper, S.A.; McCarley, R.L. Surface Modification of Poly(methyl methacrylate) Used in the Fabrication of Microanalytical Devices. Anal. Chem. 2000, 72, 5331–5337. [Google Scholar] [CrossRef]
- Eve, S.; Mohr, J. Study of the surface modification of the PMMA by UV-radiation. Procedia Eng. 2009, 1, 237–240. [Google Scholar] [CrossRef]
- Lin, T.Y.; Pfeiffer, T.T.; Lillehoj, P.B. Stability of UV/ozone-treated thermoplastics under different storage conditions for microfluidic analytical devices. RSC Adv. 2017, 7, 37374–37379. [Google Scholar] [CrossRef] [PubMed]
- Hillborg, H.; Tomczak, N.; Olah, A.; Schonherr, H.; Vancso, G.J. Nanoscale Hydrophobic Recovery: A Chemical Force Microscopy Study of UV/Ozone-Treated Cross-Linked Poly(dimethylsiloxane). Langmuir 2004, 20, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Bhurke, A.S.; Askeland, P.A.; Drzal, L.T. Surface Modification of Polycarbonate by Ultraviolet Radiation and Ozone. J. Adhes. 2007, 83, 43–66. [Google Scholar] [CrossRef]
- Kildahl, N.K. Bond Energy Data Summarized. J. Chem. Educ. 1995, 72, 423–424. [Google Scholar] [CrossRef]
- Andrews, D.L. Electromagnetic Radiation. In Encryclopedia of Spectroscopy and Spectrometry, 3rd ed.; Academic Press: London, UK, 2017; pp. 427–431. [Google Scholar]
- Teare, D.O.H.; Ton-That, C.; Bradley, R.H. Surface characterization and ageing of ultraviolet-ozone-treated polymers using atomic force microscopy and x-ray photoelectron spectroscopy. Surf. Interface Anal. 2000, 29, 276–283. [Google Scholar] [CrossRef]
Dose [J/cm2] | Water Contact Angle [°] | ||||||
---|---|---|---|---|---|---|---|
Pristine | 0 h | 1 h | 24 h | 7 Days | 15 Days | 30 Days | |
1.5 | 70.9 ± 1.9 | 55.6 ± 3.1 | 57.2 ± 3.4 | 61.3 ± 3.3 | 63.1 ± 1.4 | 63.5 ± 1.8 | 64.2 ± 3.5 |
3 | 71.5 ± 2.3 | 49.9 ± 3.8 | 51.3 ± 2.7 | 56.9 ± 2.1 | 58.8 ± 1.5 | 59.0 ± 2.3 | 60.9 ± 2.8 |
6 | 71.0 ± 1.9 | 45.8 ± 1.9 | 47.4 ± 1.5 | 52.5 ± 2.4 | 55.1 ± 2.8 | 56.0 ± 1.8 | 58.2 ± 1.9 |
9 | 71.2 ± 1.7 | 43.0 ± 2.5 | 46.3 ± 6.6 | 48.2 ± 4.9 | 50.0 ± 6.0 | 52.6 ± 4.2 | 54.2 ± 3.5 |
Dose [J/cm2] | Water Contact Angle [°] | |||||||
---|---|---|---|---|---|---|---|---|
Pristine | 0 h | Rinsing | 1 h | 24 h | 7 Days | 15 Days | 30 Days | |
1.5 | 70.1 ± 2.6 | 57.4 ± 3.2 | 59.3 ± 3.2 | 64.0 ± 3.2 | 65.1 ± 3.5 | 65.8 ± 2.1 | 66.5 ± 2.1 | 69.5 ± 2.2 |
3 | 69.6 ± 2.5 | 51.7 ± 2.6 | 57.6 ± 2.3 | 61.1 ± 3.4 | 63.5 ± 2.1 | 63.6 ± 1.5 | 64.3 ± 2.0 | 68.3 ± 2.2 |
6 | 70.2 ± 2.1 | 46.4 ± 2.0 | 58.1 ± 3.3 | 61.1 ± 2.8 | 63.8 ± 3.2 | 63.7 ± 1.7 | 64.2 ± 1.8 | 67.1 ± 2.5 |
9 | 70.8 ± 2.3 | 43.2 ± 1.3 | 58.2 ± 2.4 | 59.3 ± 2.4 | 61.7 ± 3.3 | 62.36 ± 2.0 | 62.8 ± 2.3 | 68.9 ± 2.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, G.; Park, T.; Song, I.-H. Surface Modification of Polymethylmethacrylate (PMMA) by Ultraviolet (UV) Irradiation and IPA Rinsing. Micromachines 2022, 13, 1952. https://doi.org/10.3390/mi13111952
Bae G, Park T, Song I-H. Surface Modification of Polymethylmethacrylate (PMMA) by Ultraviolet (UV) Irradiation and IPA Rinsing. Micromachines. 2022; 13(11):1952. https://doi.org/10.3390/mi13111952
Chicago/Turabian StyleBae, Geundong, Taehyun Park, and In-Hyouk Song. 2022. "Surface Modification of Polymethylmethacrylate (PMMA) by Ultraviolet (UV) Irradiation and IPA Rinsing" Micromachines 13, no. 11: 1952. https://doi.org/10.3390/mi13111952
APA StyleBae, G., Park, T., & Song, I.-H. (2022). Surface Modification of Polymethylmethacrylate (PMMA) by Ultraviolet (UV) Irradiation and IPA Rinsing. Micromachines, 13(11), 1952. https://doi.org/10.3390/mi13111952